Shock Waves

, Volume 14, Issue 5–6, pp 343–357 | Cite as

Laboratory-scale blast wave phenomena – optical diagnostics and applications

Original Article

Abstract

Laboratory-scale experiments with explosive charges in the milligram range are a useful tool to investigate basic blast wave phenomena and to replicate, to some extent, large-scale explosions. This paper reviews and discusses the optical diagnostics that can be applied in these experiments and outlines how these techniques can be used to obtain new information about the propagation and interaction of blast waves. Performance criteria for the required instrumentation are established. Several examples illustrate the potential and the limitations of this approach to blast wave research.

Keywords

Milligram charges Blast waves Density-sensitive flow visualization techniques Tracer techniques 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, W.F.: Explosions in Air. Texas University Press, Austin (1973)Google Scholar
  2. 2.
    Kinney, G.F., Graham, K.J.: Explosive Shocks in Air. Springer, Berlin Heidelberg New York (1985)Google Scholar
  3. 3.
    Dewey, J.M.: Expanding spherical shocks (blast waves). In: Ben-Dor, G., Igra, O., Elperin, T. (eds.) Handbook of Shock Waves, Vol. 2, Ch. 13.1, pp. 441–481. Academic Press, San Diego (2001)Google Scholar
  4. 4.
    Makris, A., Kleine, H.: Canadian bomb suit research update 1999. Specialist Technical Bulletin of the Royal Canadian Mounted Police (RCMP), STB 2/2000 (2000)Google Scholar
  5. 5.
    Reisler, R.E., Keefer, J.H., Ethridge, N.H.: Air blast instrumentation, Vol. 1–3. MABS Monograph, Def. Nucl. Agency, Alexandria, VA (1995)Google Scholar
  6. 6.
    Dewey, J.M.: Explosive flows: Shock tubes and blast waves. In: Yang, W.-J. (ed.) Handbook of Flow Visualization, Ch. 29, pp. 481–497. Taylor and Francis, London (1989)Google Scholar
  7. 7.
    Dewey, J.M.: Shock waves from explosions. In: Ray, S.F. (ed.) High Speed Photography and Photonics, Ch. 16, pp. 245–253. Focal Press (1997)Google Scholar
  8. 8.
    Dewey, J.M.: The properties of a blast wave obtained from an analysis of the particle trajectories. Proc. R. Soc. Lond. Ser. A 324, 275–299 (1971)ADSGoogle Scholar
  9. 9.
    Edgerton, H.E.: Shock wave photography of large subjects in daylight. Rev. Sci. Instrum. 29(2), 171–172 (1958)CrossRefGoogle Scholar
  10. 10.
    Kleine, H., Dewey, J.M., Ohashi, K., Mizukaki, T., Takayama, K.: Studies of the TNT equivalence of silver azide charges. Shock Waves 13(2), 123–138 (2003)CrossRefADSGoogle Scholar
  11. 11.
    Mizukaki, T.: Quantitative visualization of shock waves. Doctor Thesis, Graduate School of Tohoku University (in Japanese) (2001)Google Scholar
  12. 12.
    Takayama, K.: Application of holographic interferometry to shock wave research. In: Fagan, W.F. (ed.) Industrial Applications of Laser Technology, Vol. 398, pp. 174–181. SPIE, Bellingham (1983)Google Scholar
  13. 13.
    Merzkirch, W.: Flow visualization, 2nd ed., Ch. 3. Academic, Orlando (1987)Google Scholar
  14. 14.
    Settles, G.S.: Schlieren and shadowgraph techniques. Springer-Verlag, Berlin Heidelberg New York (2001)Google Scholar
  15. 15.
    Kleine, H.: Flow visualization. In: Ben-Dor, G., Igra, O., Elperin, T. (eds.) Handbook of Shock Waves, Vol. 1, Ch. 5.1, pp. 683–740. Academic, San Diego (2001)Google Scholar
  16. 16.
    Racca, R.G., Dewey, J.M.: High-speed time-resolved holographic interferometer using solid-state shutters. Optics Laser Technol. 22, 199–204 (1990)Google Scholar
  17. 17.
    Etoh, T.G., Takehara, K., Okinaka, T., Takano, Y., Ruckelshausen, A., Poggemann, D.: Development of high-speed video cameras. In: Takayama, K., Saito, T., Kleine, H., Timofeev, E. (eds.) Proceedings of the 24th International Congress on High Speed Photography & Photonics, Vol. 4183, pp. 36–47. SPIE, Bellingham (2000)Google Scholar
  18. 18.
    Kleine, H., Hiraki, K., Maruyama, H., Hayashida, T., Yonai, J., Kitamura, K., Kondo, Y., Etoh, T.G.: High-speed time-resolved color schlieren visualization of shock wave phenomena. Shock Waves (in press). DOI 10.1007/s00193-005-0273-6 (2005)Google Scholar
  19. 19.
    Miyashiro, S., Kleine, H., Grönig, H.: Short duration spark source for colour schlieren methods. In: Dewey, J.M., Racca, R. (eds.) Proceedings of the 20th International Congress on High Speed Photography & Photonics, Vol. 1801, pp. 248–257, SPIE, Bellingham (1992)Google Scholar
  20. 20.
    Kleine, H., Grönig, H., Takayama, K.: Simultaneous shadow, schlieren and interferometric visualization of compressible flows. Optics Lasers Eng. (in press). DOI 10.1016/j.optlasenq.2005.04.009 (2005)Google Scholar
  21. 21.
    Kleine, H., Grönig, H., Takayama, K.: Simultaneous schlieren and interferometry flow visualization. In: Takayama, K., Saito, T., Kleine, H., Timofeev, E. (eds.) Proceedings of the 24th International Congress on High Speed Photography and Photonics, Vol. 2183, pp. 299–308. SPIE, Bellingham (2001a)Google Scholar
  22. 22.
    Patterson, A.M., Kingery, C.N., Rowe, R.D., Petes, J., Dewey, J.M.: Fireball and shock wave anomalies observed in chemical explosions. Comb. Flame 19, 25–32 (1972)CrossRefGoogle Scholar
  23. 23.
    Hesselink, L.: Optical tomography. In: Yang, W.-J. (ed.) Handbook of Flow Visualization, Ch. 20, pp. 307–329. Taylor and Francis, London (1989)Google Scholar
  24. 24.
    Kleine, H., Timofeev, E., Takayama, K.: Reflection of blast waves from straight surfaces. In: Jiang, Z. (ed.) Proceedings ISSW24, Beijing, China, pp. 1019–1024. Springer, Berlin Heidelberg New York (2005a)Google Scholar
  25. 25.
    Kleine, H., Timofeev, E., Takayama, K.: Blast wave reflection from solid, liquid and gaseous surfaces. In: Lu, F. (ed.) Proceedings ISSW23, Fort Worth, Texas, paper # 1903, pp. 1246–1253. (2001b)Google Scholar
  26. 26.
    Havermann, M., Haertig, J., Rey, C., George, A.: Particle image velocimetry applied to high speed shock tunnel flow. In: Lu, F. (ed.) Proceedings ISSW23, Fort Worth, Texas, paper # 5115, pp. 493–499. (2001)Google Scholar
  27. 27.
    Kleine, H., Takayama, K.: Visualization of laboratory-scale blast wave phenomena. In: Kawahashi, M. (ed.) Proceedings of the 10th International Symposium on Flow Visualization, Kyoto, Japan, paper F0149 (CD ROM proceedings) (2002)Google Scholar
  28. 28.
    Thevand, N., Daniel, E.: Numerical study of the lift force influence on two-phase shock tube boundary layer characteristics. Shock Waves 11, 279–288 (2002)CrossRefADSGoogle Scholar
  29. 29.
    Dewey, J.M., McMillin, D.J.: A computer system for presenting the properties of blast waves. In: Proceedings of the 11th International Symposium on Mil. Application of Blast Simulation, pp. 554–561. Def. Nucl. Agency, USA (1989)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.School of Aerospace, Civil and Mechanical EngineeringUniversity College, University of New South Wales/Australian Defence Force AcademyCanberraAustralia
  2. 2.Department of Mechanical EngineeringMcGill UniversityMontrealCanada
  3. 3.Interdisciplinary Shock Wave Research Center Institute of Fluid ScienceTohoku UniversityAoba-ku, SendaiJapan

Personalised recommendations