Shock Waves

, Volume 14, Issue 5–6, pp 333–341 | Cite as

High-speed time-resolved color schlieren visualization of shock wave phenomena

  • H. Kleine
  • K. Hiraki
  • H. Maruyama
  • T. Hayashida
  • J. Yonai
  • K. Kitamura
  • Y. Kondo
  • T. G. Etoh
Original Article

Abstract

A newly developed high-speed color video camera, which can record 103 frames at rates of up to 1 million frames per second, has been used to obtain time-resolved color schlieren visualizations of shock wave phenomena. These trials constitute the first successful time-resolved application of the direction-indicating color schlieren method with frame rates up to 125 kHz. The instabilities of a supersonic flow over a double cone were made visible in unprecedented clarity, and the potential of the camera for schlieren visualizations was further demonstrated in experiments showing the explosion of a small firecracker and the bursting of a helium-filled toy balloon.

Keywords

High-speed video camera Density-sensitive flow visualization techniques Flow instabilities Blast waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fuller, P.W.W.: The development of high-speed photography. In: Ray, S.F. (ed.), High-Speed Photography and Photonics, pp. 7–28. Focal Press, Butterworth-Heinemann. Reprinted by SPIE under the same title as SPIE PM120 in October 2002 (1997)Google Scholar
  2. 2.
    Ray, S.F. (ed.): High-Speed Photography and Photonics. Focal Press, Butterworth-Heinemann. Reprinted by SPIE under the same title as SPIE PM120 in October 2002 (1997)Google Scholar
  3. 3.
    Balch, K.: High-speed videography. In: Ray, S.F. (ed.) High-Speed Photography and Photonics. Focal Press, Butterworth-Heinemann, pp. 99–123. Reprinted by SPIE under the same title as SPIE PM120 in October 2002 (1997)Google Scholar
  4. 4.
    Honour, J.: A high resolution electronic imaging system for schlieren recording. In: Takayama, K., Saito, T., Kleine, H., Timofeev, E. (eds.) Proceedings of the 24th International Congress on High Speed Photography & Photonics, vol. 4183, pp. 163–169, SPIE, Bellingham (2000)Google Scholar
  5. 5.
    Etoh, T.G., Takehara, K., Okinaka, T., Takano, Y., Ruckelshausen, A., Poggemann, D.: Development of high-speed video cameras. In: Takayama, K., Saito, T., Kleine, H., Timofeev, E. (eds.) Proceedings of the 24th International Congress on High Speed Photography & Photonics, vol. 4183, pp. 36–47, SPIE, Bellingham (2000)Google Scholar
  6. 6.
    Reichenbach, H.: Stoßwellen in Luft – Ausbreitung von Stoßwellen in einem Tunnel mit Verzweigungen. IWF, Göttingen, E 2581 (1981)Google Scholar
  7. 7.
    Abe, A., Ojima, H., Ogawa, T., Babinsky, H., Takayama, K.: Animated display of sequential holographic interferograms of shock wave/vortex propagation. In: Ball, G.J., Hillier, R., Roberts, G.T. (eds.) Proceedings of the 22nd International Symposium Shock Waves, pp. 1111–1116. Imperial College Press (1999)Google Scholar
  8. 8.
    Kleine, H., Takayama, K.: Recent improvements and enhancements of density-sensitive flow visualization methods. In: Proceedings of the First International Symposium on Advanced Fluid Information, pp. 551–558, Tohoku University (2001)Google Scholar
  9. 9.
    Etoh, T.G.: High speed video camera of 4500 pps. J. Inst. Television Eng. 46(5), 543–545 (1992) (in Japanese)Google Scholar
  10. 10.
    Etoh, T.G., Poggemann, D., Ruckelshausen, A., Theuwissen, A., Kreider, G., Folkerts, H.-O., Mutoh, H., Kondo, Y., Maruno, H., Takubo, K., Soya, H., Takehara, K., Okinaka, T., Takano, Y., Reisinger, T., Lohmann, C.: A CCD image sensor of 1 Mframes/s for continuous image capturing of 103 frames. In: Proceedings of the International Solid-State Circuits Conference, IEEE 0-7803-7335-9/02, pp. 45–48 (2002)Google Scholar
  11. 11.
    Maruyama, H., Ohtake, H., Hayashida, T., Yamada, M., Kitamura, K., Arai, T., Tanioka, K., Etoh, T.G., Namiki, J., Yoshida, T., Maruno, H., Kondo, Y., Ozaki T, Kanayama, S.: Color video camera capable of 1,000,000 fps with triple ultrahigh-speed image sensors. In: Paisley, D.L., Kleinfelder, S., Snyder, D.R., Thompson, B.J. (eds.) Proceedings of the 26th International Congress High Speed Photography & Photonics, vol. 5580, pp. 244–249, SPIE, Bellingham (2004)Google Scholar
  12. 12.
    Etoh, T.G., Hatsuki, Y., Okinaka, T., Ohtake, H., Maruyama, H., Hayashida, T., Yamada, M., Kitamura, K., Arai, T., Tanioka, K., Poggemann, D., Ruckelshausen, A., van Kuijk, H., Bosiers, J.T., Theuwissen, A.J.: An image sensor of 1,000,000 fps, 300,000 pixels, and 144 consecutive frames. In: Paisley, D.L., Kleinfelder, S., Snyder, D.R., Thompson, B.J. (eds.) Proceedings of the 26th International Congress on High Speed Photography & Photonics, vol. 5580, pp. 796–804, SPIE, Bellingham (2004)Google Scholar
  13. 13.
    Dewey, J.M., Kleine, H.: High-speed photography of microscale blast wave phenomena. In: Paisley, D.L., Kleinfelder, S., Snyder, D.R., Thompson, B.J. (eds.) Proceedings of the 26th International Congress on High Speed Photography & Photonics, vol. 5580, pp. 106–114, SPIE, Bellingham (2004)Google Scholar
  14. 14.
    Kleine, H., Takayama, K.: Current status of time-resolved visualisation of high-speed compressible flow. In: McIntyre, T. (ed.) Proceedings of the 3rd Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, University of Queensland, p. 121 (2002)Google Scholar
  15. 15.
    Kleine, H., Hiraki, K.: Supersonic flows over double cone geometries. In: Jiang, Z. (ed.) Proceedings of the 24th International Symposium on Shock Waves, vol. 1, pp. 101–106, Springer, Berlin Heildelberg New York (2005)Google Scholar
  16. 16.
    Kleine, H.: Flow visualization. In: Ben-Dor, G., Igra, O., Elperin, T. (eds.) Handbook of Shock Waves, vol. 1, pp. 683–740. Academic Press, New York (2001)Google Scholar
  17. 17.
    Settles, G.S.: Schlieren and Shadowgraph Techniques. Springer Verlag, Heidelberg, New York (2001)Google Scholar
  18. 18.
    Prescott, R., Gayhart, E.L.: A method of correction of astigmatism in schlieren systems. J. Aer. Sci. 18(1), 69 (1951)Google Scholar
  19. 19.
    Taylor, G.I., Maccoll, J.W.: The air pressure on a cone moving at high speed. Proc. R. Soc. Lond. Ser. A 139(838), 278–311 (1933)ADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • H. Kleine
    • 1
  • K. Hiraki
    • 2
  • H. Maruyama
    • 3
  • T. Hayashida
    • 3
  • J. Yonai
    • 3
  • K. Kitamura
    • 3
  • Y. Kondo
    • 4
  • T. G. Etoh
    • 5
  1. 1.School of Aerospace, Civil and Mechanical EngineeringUniversity College, University of New South Wales/Australian Defence Force AcademyCanberraAustralia
  2. 2.Department of Mechanical and Control Engineering, Faculty of EngineeringKyushu Institute of TechnologyKita-KyushuJapan
  3. 3.Science & Technical Research LaboratoriesNHK (Japan Broadcasting Corporation)TokyoJapan
  4. 4.Research and Development Group, Analytical and Measuring Instruments DivisionShimadzu CorporationKyotoJapan
  5. 5.Department of Civil Engineering, Graduate School of Science and EngineeringKinki UniversityOsakaJapan

Personalised recommendations