Shock Waves

, Volume 14, Issue 5–6, pp 391–402 | Cite as

Time- and space-resolved studies of shock compression molecular dynamics

  • J. E. Patterson
  • A. S. Lagutchev
  • S. A. Hambir
  • W. Huang
  • H. Yu
  • D. D. Dlott
Original Article


Two kinds of experiments are described, that measure the dynamical effects of shock compression on molecules with high time and space resolution. Time resolution is obtained using ultrafast nonlinear coherent vibrational spectroscopy. Space resolution greater than the diffraction limit is obtained by building in nanostructures of known dimensions. In the first experiments, 100 ps laser flash heating is used to suddenly vaporize Al nanoparticles embedded in reactive oxidizing polymers nitrocellulose (NC) and Teflon. The hot nanoparticles react with a surrounding shell of oxidizer and generate spherical shock waves > 10 GPa. The propagation of shock-induced chemistry in time and over distances ranging from 50 to 1,000 nm is measured and discussed. In the second experiment, femtosecond laser-driven planar shock waves run through a molecular monolayer of linear hydrocarbon chains. The methyl –CH3 groups that terminate the chains form a plane ∼1.5 Å thick. The C–H stretching vibrations of these groups are monitored as the shock front passes over. A combination of experiment and molecular simulations shows that chains with odd (15) numbers of carbon atoms become shorter by bending behind the shock front, whereas chains with even numbers (18) of carbon atoms undergo mechanical failure and shorten by forming gauche defects.


Laser-driven shock waves Nanoparticles Energetic materials Vibrational spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holian, B.L.: Molecular dynamics comes of age for shockwave research. Shock Waves 13, 489–495 (2004)CrossRefADSMATHGoogle Scholar
  2. 2.
    Dlott, D.D.: Ultrafast spectroscopy of shock waves in molecular materials. Annu. Rev. Phys. Chem. 50, 251–278 (1999)CrossRefGoogle Scholar
  3. 3.
    Funk, D.J., Moore, D.S., et al.: Ultrafast studies of shock waves using interferometric methods and transient infrared absorption spectroscopy. Thin Solid Films 453–454, 542–549 (2004)Google Scholar
  4. 4.
    McGrane, S.D., Moore, D.S., et al.: Sub-picosecond shock interferometry of transparent thin films. J. Appl. Phys. 93, 5063–5068 (2003)CrossRefADSGoogle Scholar
  5. 5.
    Reho, J.H., Moore, D.S., et al.: Ultrafast spectroscopic investigation of shock compressed glycidyl azide polymer and nitrocellulose films. AIP Conf. Proc. 620, 1219–1222 (2002)Google Scholar
  6. 6.
    Moore, D.S., Funk, D.J., et al.: Subpicosecond laser-driven shocks in metals and energetic materials. AIP Conf. Proc. 620, 1351–1354 (2002)ADSGoogle Scholar
  7. 7.
    Lagutchev, A.S., Patterson, J.E., et al.: Ultrafast dynamics of self-assembled monolayers under shock compression: effects of molecular and substrate structure. J. Phys. Chem. B 109, 5045–5054 (2005)CrossRefGoogle Scholar
  8. 8.
    Patterson, J.E., Dlott, D.D.: Ultrafast shock compression of self-assembled monolayers: a molecular picture. J. Phys. Chem. B 109, 5033–5044 (2005)CrossRefGoogle Scholar
  9. 9.
    Patterson, J., Lagutchev, A.S., et al.: Ultrafast dynamics of shock compression of molecular monolayers. Phys. Rev. Lett. 94, 015501 (2005)CrossRefADSGoogle Scholar
  10. 10.
    Patterson, J.E.: Ph.D. Thesis, University of Illinois at Urbana-Champaign (2004)Google Scholar
  11. 11.
    Patterson, J., Lagutchev, A.S., et al.: Shock compression of molecules with 1.5 angstrom resolution. AIP Conf. Proc. 706, 1299–1302 (2004)Google Scholar
  12. 12.
    Cagnoux, J., Chartagnac P., et al.: Lagrangian analysis. Modern tool of the dynamics of solids. Ann. Phys. Fr. 12, 451–524 (1987)Google Scholar
  13. 13.
    Barker, L.M.: The development of the VISAR and its use in shock compression science. AIP Conf. Proc. 505, 11–17 (2000)Google Scholar
  14. 14.
    Barker, L.M., Hollenbach, R.E.: Laser interferometer for measuring high velocities of any reflecting surface. J. Appl. Phys. 43, 4669–4674 (1972)CrossRefGoogle Scholar
  15. 15.
    Dlott, D.D.: Nanoshocks in molecular materials. Acc. Chem. Res. 33, 37–45 (2000)CrossRefGoogle Scholar
  16. 16.
    Tas, G., Franken, J., et al.: Ultrafast Raman spectroscopy of shock fronts in molecular solids. Phys. Rev. Lett. 78, 4585–4588 (1997)CrossRefADSGoogle Scholar
  17. 17.
    Tas, G., Hambir, S.A., et al.: Coherent Raman spectroscopy of nanoshocks. J. Appl. Phys. 82, 1080–1087 (1997)CrossRefADSGoogle Scholar
  18. 18.
    Hambir, S.A., Franken, J., et al.: Ultrafast spectroscopy of laser-driven nanoshocks in molecular crystals. High Pressure Sci. Technol. 7, 891–896 (1998)Google Scholar
  19. 19.
    Hambir, S.A., Franken, J., et al.: Ultrahigh time resolution vibrational spectroscopy of shocked molecular solids. J. Appl. Phys. 81, 2157–2166 (1997)CrossRefADSGoogle Scholar
  20. 20.
    Kim, H., Hambir, S.A., et al.: Shock compression of organic polymers and proteins: ultrafast structural relaxation dynamics and energy landscapes. J. Phys. Chem. B 104, 4239–4252 (2000)Google Scholar
  21. 21.
    Kim, H., Hambir, S.A., et al.: Ultrafast dynamics of shock waves in polymers and proteins: the energy landscape. Phys. Rev. Lett. 83, 5034–5037 (1999)ADSGoogle Scholar
  22. 22.
    Gahagan, K.T., Moore, D.S., et al.: Ultrafast interferometric microscopy for laser-driven shock wave characterization. J. Appl. Phys. 92, 3679–3682 (2002)CrossRefGoogle Scholar
  23. 23.
    Yang, Y., Hambir, S.A., et al.: Ultrafast vibrational spectroscopy imaging of nanoshock planar propagation. Shock Waves 11, 129–136 (2002)ADSGoogle Scholar
  24. 24.
    Yang, Y., Wang, S., et al.: Propagation of shock-induced chemistry in nanoenergetic materials: the first micrometer. J. Appl. Phys. 95, 3667–3676 (2004)ADSGoogle Scholar
  25. 25.
    Yang, Y., Wang, S., et al.: Near-infrared laser ablation of poly tetrafluoroethylene (Teflon) sensitized by nanoenergetic materials. Appl. Phys. Lett. 85, 1493–1495 (2004)ADSGoogle Scholar
  26. 26.
    Wang, S., Yu, H., et al.: Dynamical effects of the oxide layer in aluminum nanoenergetic materials. Propell. Explos. Pyrotech. 30, 148–155 (2004)ADSGoogle Scholar
  27. 27.
    Wang, S., Yang, Y., et al.: Fast spectroscopy of energy release in nanometric explosives. Chem. Phys. Lett. 368, 189–194 (2002)Google Scholar
  28. 28.
    Yang, Y., Sun, Z., et al.: Ultrafast spectroscopy of laser-initiated nanoenergetic materials. In: Armstrong, R. W., Thadhani, N. N., et al. (eds) Synthesis, Characterization and Properties of Energetic/Reactive Nanomaterials, MRS Symposium Proceedings, vol. 800, Materials Research Society, Warrendale, PA (2004)Google Scholar
  29. 29.
    Shen, Y.R.: Surface properties probed by second-harmonic and sum-frequency generation. Nature 337, 519–525 (1989)CrossRefADSGoogle Scholar
  30. 30.
    Parker, L.J., Ladouceur, H.D., et al.: Teflon and Teflon/Al (nanocrystalline) decomposition chemistry at high pressures. AIP Conf. Proc. 505, 941–944 (2000)Google Scholar
  31. 31.
    Yang, Y., Sun, Z., et al.: Fast spectroscopy of laser-initiated nanoenergetic materials. J. Phys. Chem. B 107, 4485–4493 (2003)Google Scholar
  32. 32.
    Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1998)Google Scholar
  33. 33.
    Hare, D.E., Dlott, D.D.: Picosecond coherent Raman study of solid-state chemical reactions during laser polymer ablation. Appl. Phys. Lett. 64, 715 (1994)CrossRefADSGoogle Scholar
  34. 34.
    Walter, K.C., Aumann, C.E., et al.: Energetic materials development at technanogy materials development. In: Armstrong, R.W., Thadhani, N.N., et al. (eds.) Synthesis, Characterization and Properties of Energetic/Reactive Nanomaterials, MRS Symposium Proceedingds, vol. 800 (2004)Google Scholar
  35. 35.
    Yang, Y., Wang, S., et al.: Near-infrared and visible absorption spectroscopy of nanoenergetic materials containing aluminum and boron. Propell. Explos. Pyrotech. 30, 171–177 (2004)Google Scholar
  36. 36.
    Köhler, J., Meyer, R.: Explosives, 4th edn. VCH Publishers, New York (1993)Google Scholar
  37. 37.
    Koulikov, S.G., Dlott, D.D.: Effects of energetic polymers on laser photothermal imaging materials. J. Imag. Sci. Tech. 44, 111–119 (2000)Google Scholar
  38. 38.
    Nakamura, K.G., Wakabayashi, K., et al.: Transient bond scission of polytetrafluoroethylene under laser-induced shock compression studied by nanosecond time-resolved Raman spectroscopy. AIP Conf. Proc. 620, 1259–1262 (2002)ADSGoogle Scholar
  39. 39.
    Wakabayashi, K., Nakamura, K.G., et al.: Time-resolved Raman spectroscopy of polytetrafluoroethylene under laser-driven shock compression. Appl. Phys. Lett. 75, 947–949 (1999)CrossRefADSGoogle Scholar
  40. 40.
    Garrison, B.J., Itina, T.E., et al.: Limit of overheating and the threshold behavior in laser ablation. Phys. Rev. E 68, 041501 (2003)CrossRefADSGoogle Scholar
  41. 41.
    Rethfeld, B., Temnov, V., et al.: Dynamics of ultrashort pulse-laser ablation: equation-of-state considerations. Proc. SPIE Int. Soc. Opt. Eng. 4760, 72–80 (2002)ADSGoogle Scholar
  42. 42.
    Anisimov, S.I., Inogamov, N.A., et al.: Pulsed laser evaporation: equation-of-state effects. Appl. Phys. A 69, 617–620 (1999)CrossRefADSGoogle Scholar
  43. 43.
    Kassoy, D.R., Kapila, A.K., et al.: A unified formulation for diffusive and nondiffusive thermal explosion theory. Combust. Sci. Tech. 63, 33–43 (1989)Google Scholar
  44. 44.
    Kang, J., Butler, P.B., et al.: A thermomechanical analysis of hot sport formation in condensed-phase, energetic materials. Combust. Flame 89, 117–139 (1992)CrossRefGoogle Scholar
  45. 45.
    Frank-Kamenetskii, D.A.: Diffusion and Heat Exchange in Chemical Kinetics. Princeton University Press, Princeton (1955)Google Scholar
  46. 46.
    Khasainov, B.A., Attetkov, A.V., et al.: Shock-wave initiation of porous energetic materials and visco-plastic model of hot spots. Chem. Phys. Rep. 15, 987–1062 (1996)Google Scholar
  47. 47.
    Zel'dovich, Y.B., Raiser, Y.P.: Physics of Shock Waves and High-temperature Hydrodynamic Phenomena. Academic Press, New York (1966)Google Scholar
  48. 48.
    Kitaigorodskii, A.I.: Molecular Crystals and Molecules. Academic Press, New York (1973)Google Scholar
  49. 49.
    Andersen, W.H.: Approximate method of calculating critical shock initiation conditions and run distance to detonation. Propell. Explos. Pyrotech. 9, 39–44 (1984)ADSGoogle Scholar
  50. 50.
    Walker, F.E., Walsey, R.J.: Propell. Explos. 1, 73 (1976)Google Scholar
  51. 51.
    Gahagan, K.T., Moore, D.S., et al.: Measurement of shock wave rise times in metal thin films. Phys. Rev. Lett. 85, 3205–3208 (2000)CrossRefADSGoogle Scholar
  52. 52.
    Evans, R., Badger, A.D., et al.: Time- and space-resolved optical probing of femtosecond-laser-driven shock waves in aluminum. Phys. Rev. Lett. 77, 3359–3362 (1996)CrossRefADSGoogle Scholar
  53. 53.
    McGrane, S.D., Moore, D.S., et al.: Spectrally modified chirped pulse generation of sustained shock waves. Appl. Phys. Lett. 80, 3919–3921 (2002)CrossRefADSGoogle Scholar
  54. 54.
    Funk, D.J., Moore, D.S., et al.: Ultrafast measurement of the optical properties of aluminum during shock-wave breakout. Phys. Rev. B. 64, 115114–115115 (2001)CrossRefADSGoogle Scholar
  55. 55.
    Bain, C.D., Troughton, E.B., et al.: Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 111, 321–335 (1989)Google Scholar
  56. 56.
    Fenter, P., Eisenberger, P., et al.: Chain-length dependence of the structures and phases of CH3(CH2)n−1 SH self-assembled on Au(111). Phys. Rev. Lett. 70, 2447–2450 (1993)CrossRefADSGoogle Scholar
  57. 57.
    Laibinis, P.E., Whitesides, G.M., et al.: Comparison of the structures and wetting properties of self-assembled monolayers of normal-alkanethiols on the coinage metal-surfaces, Cu, Ag, Au. J. Am. Chem. Soc. 113, 7152–7167 (1991)CrossRefGoogle Scholar
  58. 58.
    Schreiber F.: Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 65, 151–256 (2000)CrossRefGoogle Scholar
  59. 59.
    Shen, Y.R.: Surfaces probed by nonlinear optics. Surf. Sci. 299/300, 551–562 (1994)CrossRefGoogle Scholar
  60. 60.
    Bain, C.D., Davies, P.B., et al.: Quantitative analysis of monolayer composition by sum-frequency vibrational spectroscopy. Langmuir 7, 1563–1566 (1991)CrossRefGoogle Scholar
  61. 61.
    Richter, L.J., Petralli-Mallow, T.P., et al.: Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses. Opt. Lett. 23, 1594–1596 (1998)ADSGoogle Scholar
  62. 62.
    Nishi, N., Hobara, D., et al.: Chain-length-dependent change in the structure of self-assembled monolayers of n-alkanethiols on Au(111) probed by broad-bandwidth sum frequency generation spectroscopy. J. Chem. Phys. 118, 1904–1911 (2003)CrossRefADSGoogle Scholar
  63. 63.
    Du, Q., Xiao, X.-D., et al.: Nonlinear optical studies of monomolecular films under pressure. Phys. Rev. B 51, 7456–7463 (1995)ADSGoogle Scholar
  64. 64.
    Fraenkel, R., Butterworth, G.E., et al.: In situ vibrational spectroscopy of an organic monolayer at the sapphire-quartz interface. J. Am. Chem. Soc. 120, 203–204 (1998)Google Scholar
  65. 65.
    Beattie, D.A., Haydock, S., et al.: A comparative study of confined organic monolayers by Raman scattering and sum-frequency spectroscopy. Vibr. Spectrosc. 24, 109–123 (2000)CrossRefGoogle Scholar
  66. 66.
    Berg, O., Klenerman, D.: Effects of mechanical compression on the vibrational spectrum of a self-assembled monolayer. J. Appl. Phys. 90, 5070–5074 (2001)CrossRefADSGoogle Scholar
  67. 67.
    Berg, O., Klenerman, D.: Vibrational spectroscopy of mechanically compressed monolayers. J. Am. Chem. Soc. 125, 5493–5500 (2003)CrossRefGoogle Scholar
  68. 68.
    Marsh, S.P.: LASL Shock Hugoniot Data, University of California Press, Berkeley, CA (1980)Google Scholar
  69. 69.
    Schoen, P.E., Campillo, A.J.: Characteristics of compressional shocks resulting from picosecond heating of confined foils. Appl. Phys. Lett. 45, 1049–1051 (1984)CrossRefADSGoogle Scholar
  70. 70.
    Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Holt, Reinhart and Winston, New York (1976)Google Scholar
  71. 71.
    Siepmann, J.I., McDonald, I.R.: Domain formation and system-size dependence in simulations of self-assembled monolayers. Langmuir 9, 2351–2355 (1993)CrossRefGoogle Scholar
  72. 72.
    Vemparala, S., Karki, B.B., et al.: Large-scale molecular dynamics simulations of alkanethiol self-assembled monolayers. J. Chem. Phys. 121, 4323–4330 (2004)ADSGoogle Scholar
  73. 73.
    Hambir, S.A., Kim, H., et al.: Real time ultrafast spectroscopy of shock front pore collapse. J. Appl. Phys. 90, 5139–5146 (2001)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • J. E. Patterson
    • 1
  • A. S. Lagutchev
    • 2
  • S. A. Hambir
    • 2
  • W. Huang
    • 2
  • H. Yu
    • 2
  • D. D. Dlott
    • 2
  1. 1.Institute of Shock PhysicsWashington State UniversityPullmanUSA
  2. 2.School of Chemical SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations