Shock Waves

, Volume 14, Issue 3, pp 205–215 | Cite as

DDT in a smooth tube filled with a hydrogen–oxygen mixture

  • M. Kuznetsov
  • V. Alekseev
  • I. Matsukov
  • S. Dorofeev
Original Article


Results of experimental study on DDT in a smooth tube filled with sensitive mixtures having detonation cell size from 1 to 3 orders of magnitude smaller than the tube diameter are presented. Stoichiometric hydrogen–oxygen mixtures were used in the tests with initial pressure ranging from 0.2 to 8 bar. A dependence of the run-up distance to DDT on the initial pressure is studied. This dependence is found to be close to the inverse proportionality. It is suggested that the flow ahead of the flame results in formation of the turbulent boundary layer. This boundary layer controls the scale of turbulent motions in the flow. A simple model to estimate the maximum scale of the turbulent pulsations (boundary layer thickness) at flame positions along the tube is presented. The largest scale of the turbulent motions at the location of the onset of detonation is shown to be 1 order of magnitude greater than the detonation cell widths, λ, in all the tests. It is suggested that the onset of detonation is triggered during flame acceleration as soon as the maximum scale of the turbulent pulsations increases up to about 10 λ. The model to estimate the maximum size of turbulent motions, δ, and the correlation δ≈ 10λ, give a basis for estimations of the run-up distances to DDT in tubes with internal diameter D > 20λ.


DDT Onset of detonations Flame acceleration Run-up distance Boundary layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Urtiew, P., Oppenheim, A.K.: Experimental observations of the transition to detonation in an explosive gas. Proc. R. Soc. Lond. Ser. A 295, 13–28 (1966)ADSGoogle Scholar
  2. 2.
    Lee, J.H., Knystautas, R., Chan, C.K.: Turbulent flame propagation in obstacle-filled tubes. In: Proceedings of the 20th Symposium (International) on Combustion, pp. 1663–1672. The Combustion Institute, Pittsburgh, PA (1984)Google Scholar
  3. 3.
    Peraldi, O., Knystautas, R., Lee, J.H.: Criteria for transition to detonation in tubes. In: Proceedings of the 21st Symposium (International) on Combustion, pp. 1629–1637. The Combustion Institute, Pittsburgh (1986)Google Scholar
  4. 4.
    Dorofeev, S.B., Kuznetsov, M.S., Alekseev, V.I., Efimenko, A.A., Breitung, W.: Evaluation of limits for effective flame acceleration in hydrogen mixtures. J. Loss Prev. Process. Ind. 14, 583–589 (2001)CrossRefGoogle Scholar
  5. 5.
    Veser, A., Breitung, W., Dorofeev, S.B.: Run-up distances to supersonic flames in obstacle-laden tubes. J. Phys. IV Fr. 12, 333–340 (2002)Google Scholar
  6. 6.
    Schelkin, K.I.: Occurance of detonation in gases in rough-walled tubes. Soviet J. Tech. Phys. 17(5), 613 (1947)Google Scholar
  7. 7.
    Soloukhin, R.I.: Deflagration to detonation transition in gases. Soviet Prikladn. Mech. i Techn. Phys. (Appl. Mech. Techn. Phys.) (4), 128 (1961)Google Scholar
  8. 8.
    Lafitte, P., Dumanois, P.: Compt. Rend. Acad. Sci. Paris 183, 284 (1926)Google Scholar
  9. 9.
    Lafitte, P.: Influence of temperature on the formation of explosive waves. Compt. Rend. Acad. Sci., Paris 186, 951 (1928)Google Scholar
  10. 10.
    Egerton, A., Gates, S.F.: Proc. R. Soc. Lond. Ser. A 114, 152 (1927)ADSGoogle Scholar
  11. 11.
    Egerton, A., Gates, S.F.: Proc. R. Soc. Lond. Ser. A 116, 516 (1927)ADSGoogle Scholar
  12. 12.
    Schelkin, K.I., Sokolik, A.S.: Soviet. Zhurn. Phys. Chem. 10, 479 (1937)Google Scholar
  13. 13.
    Campbell, G.A., Rutledge, P.V.: Detonation of hydrogen peroxide vapour. Inst. Chem. Eng. Symp. Ser. 33, Institute of Chemical Engineering, p. 37. London (1972)Google Scholar
  14. 14.
    Bollinger, L.E., Fong, M.C., Edse, R.: Experimental measurements and theoretical analysis of detonation induction distance. Am. Rocket Soc. J. 31, 588 (1961)Google Scholar
  15. 15.
    Bollinger, L.E., Laughrey, J.A., Edse, R.: Experimental detonation velocities and induction distances in hydrogen–nitrous oxide mixture. Am. Rocket Soc. J. 32, 81 (1962)Google Scholar
  16. 16.
    Salamandra, G.D., Bazhenova, T.V., Zaicev, S.G., Soloukhin, R.I.: Some methods for investigation of fast-running processes. Acad. Nauk SSSR, Moscow (1963)Google Scholar
  17. 17.
    Manzhalei, V.I., Mitrofanov, V.V., Subbotin, V.A.: Measurement of inhomogeneities of a detonation front in gas mixtures at elevated pressures. Combust. Explos. Shock Waves (USSR) 10, 89–95 (1974)Google Scholar
  18. 18.
    Gavrikov, A.I., Efimenko, A.A., Dorofeev, S.B.: Detonation cell size predictions from detailed chemical kinetic calculations. Combust. Flame 120, 19–33 (2000)CrossRefGoogle Scholar
  19. 19.
    Reynolds, W.C.: The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN Version 3. Department of Mechanical Engineering, Stanford University, Palo Alto, California (1986)Google Scholar
  20. 20.
    Gavrikov, A.I., Bezmelnitsyn, A.V., Leliakin, A.L., Dorofeev, S.B.: Extraction of basic flame properties from laminar flame speed calculations. In: Proceedings of the 18th International Colloquium on the Dynamics of Explosions and Reactive Systems, ISBN #0-9711740-0-8, University of Washington, July, 2001, pp. 114/1–114/5 (2001)Google Scholar
  21. 21.
    Koroll, G.W., Kumar, R.K., Bowles, E.M.: Burning velocities of hydrogen–air mixtures. Combust. Flame 94, 330–340 (1993)CrossRefGoogle Scholar
  22. 22.
    Zel'dovich, Ya.B., Librovich, V.B., Makhviladze, G.M., Sivashinsky, G.I.: On the development of detonation in a non-uniformly preheated gas. Astronautica Acta 15, 313–321 (1970)Google Scholar
  23. 23.
    Lee, J.H.S., Knystautas, R., Yoshikawa, N.: Photochemical initiation and gaseous detonations. Acta Astronautica 5, 971–972 (1978)CrossRefGoogle Scholar
  24. 24.
    Dorofeev, S.B., Efimenko, A.A., Kochurko, A.S., Chaivanov, B.B.: Evaluation of the hydrogen explosions hazard. Nucl. Eng. Design 148, 305 (1994)CrossRefGoogle Scholar
  25. 25.
    Khokhlov, A.M., Oran, E.S., Wheeler, J.C.: A theory of deflagration-to-detonation transition in unconfined flames. Combust. Flame 108, 503–517 (1997)CrossRefGoogle Scholar
  26. 26.
    Dorofeev, S.B., Sidorov, V.P., Kuznetsov, M.S., Matsukov, I.D., Alekseev, V.I.: Effect of scale on the onset of detonations. Shock Waves 10, 137–149 (2000)CrossRefADSGoogle Scholar
  27. 27.
    Landau, L.D., Lifshitz, E.M.: Hydrodynamics, 3rd edn., p. 736. Nauka, Moscow (1986)Google Scholar
  28. 28.
    Loiciansky, L.G.: Mechanics of Fluid and Gas, 5 edn., p. 736. Nauka, Moscow (1978)Google Scholar
  29. 29.
    Khokhlov, A.M., Oran, E.S., Thomas, G.O.: Numerical simulation of detonation initiation in a flame brush: the role of hot spots. Combust. Flame 119, 400–416 (1999)CrossRefGoogle Scholar
  30. 30.
    Khokhlov, A.M., Gameso, V.N., Oran, E.S.: Effects of boundary layers on shock-flame interactions and DDT. In: Proceedings of the 18th International Colloquium on the Dynamics of Explosions and Reactive Systems, July, 2001, University of Washington, ISBN #0-9711740-0-8 (2001)Google Scholar
  31. 31.
    Kuznetsov, M., Singh, R.K., Breitung, W., Stern, G., Grune, J., Friedrich, A., Sempert, K., Veser, A.: Evaluation of structural integrity of typical DN15 tubes under detonation loads. Report Forschungszentrum Karlsruhe, December (2003)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. Kuznetsov
    • 1
  • V. Alekseev
    • 2
  • I. Matsukov
    • 2
  • S. Dorofeev
    • 1
  1. 1.Forschungszentrum KarlsruheKarlsruheGermany
  2. 2.Russian Research CenterKurchatov InstituteMoscowRussia

Personalised recommendations