Shock Waves

, Volume 14, Issue 5–6, pp 313–331 | Cite as

Axisymmetric shock wave interaction with a cone: a benchmark test

  • M. Sun
  • T. Saito
  • P. A. Jacobs
  • E. V. Timofeev
  • K. Ohtani
  • K. Takayama
Original Article


Results of the benchmark test are presented of comparing numerical schemes solving shock wave of M s = 2.38 in nitrogen and argon interacting with a 43∘ semi-apex angle cone and corresponding experiments. The benchmark test was announced in Shock Waves Vol. 12, No. 4, in which we tried to clarify the effects of viscosity and heat conductivity on shock reflection in conical flows. This paper summarizes results of ten numerical and two experimental applications. State of the art in studies regarding the shock/cone interaction is clarified.


Shock wave reflection Axial symmetry Cone Benchmark test Viscosity Heat conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Takayama, K., Inoue, O.: Shock wave diffraction over a 90 degree sharp corner. Posters presented at 18th ISSW. Shock Waves 1, 301–312 (1991)Google Scholar
  2. 2.
    Takayama, K., Jiang, Z.: Shock wave reflection over wedges: a benchmark test for CFD and experiments. Shock Waves 7, 191–203 (1997)CrossRefADSGoogle Scholar
  3. 3.
    White, F.M.: Viscous fluid flow. McGraw-Hill (1991)Google Scholar
  4. 4.
    Elhers, J.G., Gordon, S., McBride, B.J., Heimil, S.: Thermodynamic properties to 6000 K for 210 substances involving the first 18 elements. Technical Report SP-3001. NASA (1963)Google Scholar
  5. 5.
    CFDRC: CFD-FASTRAN Theory Manual (2002)Google Scholar
  6. 6.
    Jacobs, P.A.: Single-block Navier-Stokes integrator. ICASE Interim Report 18 (1991)Google Scholar
  7. 7.
    Jacobs, P.A.: MB_CNS: A computer program for the simulation of transient compressible flows. Department of Mechanical Engineering Report 10/96, The University of Queensland, Brisbane (1996)Google Scholar
  8. 8.
    Jacobs, P.A.: MB_CNS: A computer program for the simulation of Transient compressible flows; 1998 Update. Department of Mechanical Engineering Report 7/98, The University of Queensland, Brisbane /mb_cns.html (1998)Google Scholar
  9. 9.
    Macrossan, M.N.: The equilibrium flux method for the calculation of flows with non-equilibrium chemical reactions. Journal of Computational Physics 80, 204–231 (1989)CrossRefADSMATHGoogle Scholar
  10. 10.
    Wada, Y., Liou, M.S.: A flux splitting scheme with high-resolution and robustness for discontinuities. AIAA Paper 94–0083 (1994)Google Scholar
  11. 11.
    Baldwin, B.S., Lomax, H.: Thin layer approximation and algebraic model for separated turbulent flows: a review. AIAA J. 23(9), 1308 (1985)MathSciNetGoogle Scholar
  12. 12.
    Kim, K.H., Kim, C.: Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows: Part I: Spatial discretization J. of Comput. Phys. 208, 527–569 (2005)ADSGoogle Scholar
  13. 13.
    Kim, K.H., Kim, C.: Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows: Part II: Multi-dimensional limiting process, J. Comput. Phys. 208, 570–615 (2005)ADSGoogle Scholar
  14. 14.
    Li, Q., Fu, S.: 3D numerical simulation of planar compressible free mixing layer. In: Armfield, S., Morgan, P., Srinivas, K. (eds.) Proc. of 2nd Intl. Conference on Computational Fluid Dynamics, pp. 223–228. Springer (2002)Google Scholar
  15. 15.
    Xu, K.: A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys. 171, 289–335 (2001)ADSMATHMathSciNetGoogle Scholar
  16. 16.
    Kee, R.J., Rupley, F.M., Miller, J.A.: The Chemkin thermodynamic data base. Sandia report SAND87–8215B (1987)Google Scholar
  17. 17.
    Burtschell, Y., Zeitoun, D.E.: Shock/shock and shock/boundary layer interactions in an axisymmetric steady laminar flow. Shock Waves 12, 487–495 (2003)CrossRefADSGoogle Scholar
  18. 18.
    Barthel, J.R.: 2D hydrocode computations using a κ−∊ turbulence model: model description and test calculations. S-Cubed Technical Report SSS-TR-85-7115/R1, S-Cubed, A Division of Maxwell Laboratories, Inc. (1985)Google Scholar
  19. 19.
    Hikida, S., Bell, R.L., Needham, C.E.: The SHARC codes: documentation and sample problems. Volume I: Inviscid fluid dynamics. S-Cubed Technical Report SSS-R-89-9878, S-Cubed, A Division of Maxwell Laboratories, Inc. (1988)Google Scholar
  20. 20.
    Suzuki, T., Adach, T., Kobayashi, S.: Non-stationary shock reflection over non-straight surfaces: an approach with a method of steps. Shock Waves 7, 55–62 (1997)CrossRefADSGoogle Scholar
  21. 21.
    Crepeau, J., Hikida, S., Needham, C.E.: SHAMRC second-order hydrodynamic mesh refinement code. Volume 1: Methodology. Applied Research Associates, Inc., 4300 San Mateo Blvd. N.E., Suite A220, Albuquerque, NM 87110 (2001)Google Scholar
  22. 22.
    Sun, M.: Numerical and experimental studies of shock wave interaction with bodies. Ph.D. Thesis, Tohoku University, Japan (1998)Google Scholar
  23. 23.
    Sun, M., Takayama, K.: Conservative smoothing on an adaptive quadrilateral grid. J. of Computational Physics 150, 143–180 (1999)ADSGoogle Scholar
  24. 24.
    Sun, M., Takayama, K.: An artificially-upstream flux vector splitting scheme for the Euler equations. Journal of Computational Physics 189, 305–329 (2003)CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Kosugi, T., Mitobe, H., Takayama, K., Kitade, M.: Shock wave reflections over rigid wedges and cones: In: Hillier R, Robert R, Graham W (eds) Proc 22 ISSW 2, 527–532 (1999)Google Scholar
  26. 26.
    Saito, T., Menezes, V., Kuribayashi, T., Sun, M., Jagadeesh, G., Takayama, K.: Unsteady convective surface heat flux measurements on cylinder for CFD code validation. Shock Waves 13, 327–337 (2004)ADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. Sun
    • 1
  • T. Saito
    • 2
  • P. A. Jacobs
    • 3
  • E. V. Timofeev
    • 4
  • K. Ohtani
    • 1
  • K. Takayama
    • 1
  1. 1.Institute of Fluid ScienceTohoku UniversityAoba-ku, SendaiJapan
  2. 2.Department of Mechanical Systems EngineeringMuroran Institute of TechnologyMuroranJapan
  3. 3.Centre for Hypersonics, School of EngineeringThe University of QueenslandBrisbaneAustralia
  4. 4.Department of Mechanical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations