Shock Waves

, 15:55 | Cite as

Application of underwater shock wave and laser-induced liquid jet to neurosurgery

  • T. Tominaga
  • A. Nakagawa
  • T. Hirano
  • J. Sato
  • K. Kato
  • S. H. R. Hosseini
  • K. Takayama
Original Article

Abstract

Paper deals with applications of underwater shock waves to medicine. A historical development of underwater shock wave generation by using pulsed Ho:YAG laser beam irradiation in water is briefly described and an overview is given regarding potential applications of shock waves to neuro-surgery. The laser beam irradiation in a liquid-filled catheter produces water vapor bubble and shock waves intermittently produces micro-liquid jets in a controlled fashion from the exit of the catheter. Correlations between shock dynamics and bubble dynamics are emphasized. To optimize the jet motion, results of basic parametric studies are briefly presented. The liquid jet discharged from the catheter exit has an impulse high enough to clearly exhibit effectiveness for various medical purposes. In liquid jets we observed reasonably strong shock waves and hence invented a compact shock generator aiming to apply to microsurgery. We applied it to a rat's bone window and developed an effective method of brain protection against shock loading. The insertion of Gore-Tex® sheet is found to attenuate shock waves drastically even for very short stand off distance and its physical mechanism is clarified. The laser-induced liquid jet (LILJ) is successfully applied to soft tissue dissection. Animal experiments were performed and results of histological observations are presented in details. Results of animal experiments revealed that LILJ can sharply dissect soft tissue with a minimum amount of liquid consumption, while blood vessels larger than 0.2 mm in diameter are preserved. Shock waves and LILJ have a potential to be indispensable tools in neuro-surgery.

Keywords

Neurosurgery Underwater shock wave Liquid jet 

References

  1. 1.
    Chaussy, C., Brendel, W., Schmiedt, E.: Extracorporeally induced destruction of kidney stones by shock waves. Lancet 2, 1265 (1980)CrossRefGoogle Scholar
  2. 2.
    Haupt, G., Haupt, A., Ekkernkamp, A., Gerety, B., Chvapil, M.: Influence of shock wave on fracture healing. Urology 39, 529–532 (1992)CrossRefGoogle Scholar
  3. 3.
    Maier, M., Milz, S., Tischer, T., Munzing, W., Manthey, N., Stabler, A., Holzknecht, N., Weiler, C., Nerlich, A., Refior, H.J., Schmitz, C.: Influence of extracorporeal shock-wave application on normal bone in an animal model in vivo. Scintigraphy, MRI and histopathology. J. Bone Joint Surg. (Br) 84-B, 592–599 (2002)Google Scholar
  4. 4.
    Delius, M., Adams, G.: Shock wave permiabilization with ribosome inactivating proteins: A new approach to tumor therapy. Cancer Res. 59, 5227–5232 (1999)Google Scholar
  5. 5.
    Kodama, T., Tatsuno, M., Sugimoto, S., Uenohara, H., Yoshimoto, T., Takayama, K.: Liquid jets, accelerated thrombolysis: A study for revascularization of cerebral embolism. Ultrasound Med. Biol. 25, 977–983 (1999)CrossRefGoogle Scholar
  6. 6.
    Kuwahara, M., Kambe, K., Kurosu, S., Kageyama, S., Ioritani, N., Orikasa, S., Takayama, K.: Clinical application of extracorporeal shock wave lithotripsy using microexplosions. J. Urol. 137, 837–840 (1987)Google Scholar
  7. 7.
    Hirano, T., Komatsu, M., Ezura, M., Uenohara, H., Takahashi, A., Takayama, K., Yoshimoto, T.: Formation of a liquid jet by interaction between a laser-induced bubble and a shock wave. Intervent. Neuroradiol. 7(1), 35–40 (2001)Google Scholar
  8. 8.
    Hirano, T., Komatsu, M., Saeki, T., Uenohara, H., Takahashi, A., Takayama, K., Yoshimoto, T.: Enhancement of fibrinolytics with a laser-induced liquid jet. Lasers Surg. Med. 29, 360–368 (2001)CrossRefGoogle Scholar
  9. 9.
    Obara, T.: Study on medical application of underwater shock wave focusing. Doctor thesis, Tohoku University (1992)Google Scholar
  10. 10.
    Nakagawa, A., Hirano, T., Kusaka, Y., Sato, M., Uenohara, H., Shirane, R., Takayama, K., Yoshimoto, T.: Biological effect of shock waves on rat brain: Pathological evaluation by compact Ho:YAG laser-induced cavitational shock wave generator. Proc. SPIE 4948, 263–268 (2003)CrossRefGoogle Scholar
  11. 11.
    Nakagawa, A., Kusaka, Y., Hirano, T., Saito, T., Shirane, R., Takayama, K., Yoshimoto, T.: Application of shock waves as a treatment modality in the vicinity of the brain and skull. J. Neurosurg. 99, 156–162 (2003)Google Scholar
  12. 12.
    Saito, T., Marumoto, M., Yamashita, H., Hosseini, S.H.R., Nakagawa, A., Hirano, T., Takatama, K.: Experimental and numerical studies of underwater shock wave attenuation. Shock Waves 13, 139–148 (2003)CrossRefGoogle Scholar
  13. 13.
    Saito, T., Voinovich, P.A., Nakagawa, A., Hosseini, S.H.R., Takayama, K., Hirano, T.: On the efficiency of Gore-Tex layer for brain protection from shock wave damage in cranioplasty. Rev. Sci. Instrum. 75(11), 4789–4796 (2004)CrossRefGoogle Scholar
  14. 14.
    Hirano, T., Nakagawa, A., Uenohara, H., Ohyama, H., Jokura, H., Takayama, K., Shirane, R.: Pulsed liquid jet dissector using holmium:YAG laser—A novel neurosurgical device for brain incision without impairing vessels. Acta Neurochir. (Wien) 145, 401–406 (2003)Google Scholar
  15. 15.
    Nakagawa, A., Hirano, T., Komatsu, M., Sato, M., Uenohara, H., Ohyama, H., Kusaka, Y., Shirane, R., Takayama, K., Yoshimoto, T.: Holmium:YAG laser-induced liquid jet knife: Possible novel method for dissection. Lasers Surg. Med. 31, 129–135 (2002)CrossRefGoogle Scholar
  16. 16.
    Hirano, T., Uenohara, H., Komatsu, M., Nakagawa, A., Satoh, M., Ohyama, H., Takayama, K., Yoshimoto, T.: Holmium:YAG laser-induced liquid jet dissector: A novel prototype device for dissecting organs without impairing vessels. Minim. Invas. Neurosurg. 46, 121–125 (2003)CrossRefGoogle Scholar
  17. 17.
    Nakagawa, A., Hirano, T., Jokura, H., Uenohara, H., Ohki, T., Hashimoto, T., Menenges, V., Sato, Y., Kusaka, Y., Ohyama, H., Saito, T., Takayama, K., Shirane, R., Tominaga, T.: Pulsed holmium:yttrium–aluminum–garnet laser-induced liquid jet as a novel dissection device in neuroendoscopic surgery. J. Neurosurg. 101, 145–150 (2004)CrossRefGoogle Scholar
  18. 18.
    Ohki, T., Nakagawa, A., Hirano, T., Hashimoto, T., Menezes, V., Jokura, H., Uenohara, H., Sato, Y., Saito, T., Shirane, R., Tominaga, T., Takayama, K.: Experimental application of Pulsed Ho:YAG laser-induced liquid jet as a novel device for rigid neuroendoscope. Lasers Surg. Med. 34, 227–234 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • T. Tominaga
    • 1
  • A. Nakagawa
    • 1
  • T. Hirano
    • 1
  • J. Sato
    • 1
  • K. Kato
    • 1
  • S. H. R. Hosseini
    • 2
  • K. Takayama
    • 2
  1. 1.Department of NeurosurgeryTohoku University Graduate School of MedicineSendaiJapan
  2. 2.Biomedical Engineering Research OrganizationTohoku UniversitySendaiJapan

Personalised recommendations