Shock Waves

, Volume 15, Issue 1, pp 21–29 | Cite as

Adaptive smoothed particle hydrodynamics for high strain hydrodynamics with material strength

Original Article

Abstract

This paper presents the implementation of an adaptive smoothed particle hydrodynamics (ASPH) method for high strain Lagrangian hydrodynamics with material strength. In ASPH, the isotropic kernel in the standard SPH is replaced with an anisotropic kernel whose axes evolve automatically to follow the mean particle spacing as it varies in time, space, and direction around each particle. Except for the features inherited from the standard SPH, ASPH can capture dimension-dependent features such as anisotropic deformations with a more generalized elliptical or ellipsoidal influence domain. Two numerical examples, the impact of a plate against a rigid surface and the penetration of a cylinder through a plate, are investigated using both SPH and ASPH. The comparative studies show that ASPH has better accuracy than the standard SPH when being used for high strain hydrodynamic problems with inherent anisotropic deformations.

Keywords

Smoothed particle hydrodynamics Adaptive smoothed particle hydrodynamics Isotropic kernel Anisotropic kernel High strain hydrodynamics 

References

  1. 1.
    Benson, D.J.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99, 235–394 (1992)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Charles, E.A. Jr.: An overview of the theory of hydrocodes. Int. J. Impact Eng. 5, 33–59 (1987)CrossRefGoogle Scholar
  3. 3.
    Hans, U.M.: Review: hydrocodes for structure response to underwater explosions. Shock Vib. 6(2), 81–96 (1999)Google Scholar
  4. 4.
    Liberskty, L.D., Petschek, A.G., Carney, T.C., Hipp, J.R., Allahdadi, F.A.: High strain Lagrangian hydrodynamics. J. Comput. Phys. 109, 67–75 (1993)CrossRefGoogle Scholar
  5. 5.
    Swegle, J.W., Attaway, S.W.: On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations. Comput. Mech. 17, 151–168 (1995)MATHCrossRefGoogle Scholar
  6. 6.
    Walters, W.P., Zukas, J.A.: Fundamentals of shaped charges. Wiley (1989)Google Scholar
  7. 7.
    Liu, G.R.: Mesh free methods: moving beyond the finite element method. CRC Press, Boca Raton, FL (2002)Google Scholar
  8. 8.
    Liu, G.R., Liu, M.B.: Smoothed particle hydrodynamics—a meshfree particle method, World Scientific, Singapore (2003)Google Scholar
  9. 9.
    Lucy, L.: A numerical approach to testing the fission hypothesis. Astron. J. 82, 1013–1024 (1977)CrossRefGoogle Scholar
  10. 10.
    Gingold, R.A., Monaghan, J.J. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)MATHGoogle Scholar
  11. 11.
    Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)CrossRefGoogle Scholar
  12. 12.
    Randles, P.W., Libersky, L.D. Smoothed particle hydrodynamics: some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 139, 375–408 (1996)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Liu, M.B., Liu, G.R., Zong, Z., Lam, K.Y.: Computer simulation of the high explosive explosion using smoothed particle hydrodynamics methodology. Comput. Fluids 32(3), 305–322 (2003a)MATHCrossRefGoogle Scholar
  14. 14.
    Liu, M.B., Liu, G.R., Zong, Z., Lam, K.Y.: Smoothed particle hydrodynamics for numerical simulation of underwater explosions. Comput. Mech. 30(2), 106–118 (2003b)MATHCrossRefGoogle Scholar
  15. 15.
    Libersky, L.D., Petscheck, A.G.: Smoothed particle hydrodynamics with strength of materials, In: Proceedings of The Next Free Lagrange Conference, Springer-Verlag, New York, pp. 248–257 (1991)Google Scholar
  16. 16.
    Johnson, G.R., Petersen, E.H., Stryk, R.A.: Incorporation of an SPH option into the EPIC code for a wide range of high velocity impact computations. Int. J. Impact Eng. 14, 385–394 (1993)CrossRefGoogle Scholar
  17. 17.
    Johnson, G.R., Stryk, R.A., Beissel, S.R.: SPH for high velocity impact computations, Comput. Methods Appl. Mech. Eng. 139, 347–373 (1996)MATHCrossRefGoogle Scholar
  18. 18.
    Plimpton, S.J., Attaway, S., Hendrickson, B., Swegle, J., Vaughan, C., Gardner, D.: Parallel transient dynamics simulations: algorithms for contact detection and smoothed particle hydrodynamics. J. Parallel Distr. Commun. 50, 104–122 (1998)MATHCrossRefGoogle Scholar
  19. 19.
    Brown, K., Attaway, S., Plimpton, S.J., Hendrickson, B.: Parallel strategies for crash and impact simulations, Comput. Methods Appl. Mech. Eng. 184, 375–390 (2000)MATHCrossRefGoogle Scholar
  20. 20.
    Bicknell, G.V., Gingold, R.A.: On tidal detonation of star by massive black holes. Astrophys. J. 273, 749–760 (1983)CrossRefGoogle Scholar
  21. 21.
    Shapiro, P.R., Martel, H., Villumsen, J.V., Kang, H.: Smoothed particle hydrodynamics and the simulation of galaxy and large-scale structure formation. Rev. Mexi. Astron. Astrofis. 27, 187–190 (1993)Google Scholar
  22. 22.
    Fulbright, M.S., Benz, W.: A method of smoothed particle hydrodynamics using spheroid kernels. Astron. J. 440, 254–262 (1995)Google Scholar
  23. 23.
    Shapiro, P.R., Martel, H., Villumsen, J.V., Owen, J.M.: Adaptive smoothed particle hydrodynamics, with application to cosmology: methodology. Astrophys. J. Suppl. S. 103, 269–330 (1996)CrossRefGoogle Scholar
  24. 24.
    Owen, J.M., Villumsen, J.V., Shapiro, P.R., Martel, H.: Adaptive smoothed particle hydrodynamics: methodology. II. Astrophys. J. Suppl. S. 116, 155–209 (1998)CrossRefGoogle Scholar
  25. 25.
    Liu, M.B., Liu, G.R.: Meshfree particle simulation of micro channel flows with surface tension. Comput. Mech. 35, 332–341 (2005)MATHCrossRefGoogle Scholar
  26. 26.
    Zukas, J.A.: High velocity impact, Wiley, New York (1990)Google Scholar
  27. 27.
    Tillotson, J.H.: Metallic equations of state for hypervelocity impact. GA-3216, General Atomic, San Diego, CA (1962)Google Scholar
  28. 28.
    Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the Seventh International Symposium on Ballistics, The Hague, The Netherlands, pp. 541–547 (1983)Google Scholar
  29. 29.
    Benz, W.: Smoothed particle hydrodynamics: a review. NATO Workshop, Les Arcs, France (1989)Google Scholar
  30. 30.
    Monaghan, J.J., Lattanzio, J.C.: A refined particle method for astrophysical problems. Astron. Astrophys. 149, 135–143 (1985)MATHGoogle Scholar
  31. 31.
    Hiermaier, S., Konke, D., Stilp, A.J., Thoma, K.: Computational simulation of the hypervelocity impact of Al-sphere on thin plates of different materials. Int. J. Impact Eng. 20(1–5), 363–374 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.College of EngineeringNanyang Technological UniversityNanyangSingapore
  2. 2.Department of Mechanical EngineeringNational University of SingaporeNanyangSingapore

Personalised recommendations