International Urogynecology Journal

, Volume 21, Issue 3, pp 261–270 | Cite as

Polypropylene as a reinforcement in pelvic surgery is not inert: comparative analysis of 100 explants

  • Arnaud Clavé
  • Hannah Yahi
  • Jean-Claude Hammou
  • Suzelei Montanari
  • Pierre Gounon
  • Henri Clavé
Original Article


Introduction and hypothesis

Currently, most implants used for reinforcement in surgical treatment of pelvic floor disorders are knitted monofilament polypropylene (PP). While previously recognized as inert, PP is associated with high complication rates. Some recent literature suggests polyester prosthetics based on poly(ethylene terephthalate) (PET), which may be more inert in vivo.


A sample of 100 implants explanted from patients due to complications was examined to evaluate the relative degradation characteristics of PP and PET prosthetics. Histological, microscopic (scanning electron microscopy, SEM) and chemical analysis (Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC)) were conducted on these explants.


Poly(ethylene terephtahlate) explants appeared to sustain less degradation in vivo than the PP explants observed in this cohort.


This is the first study to evaluate synthetic implants used in a vaginal approach for pelvic floor reinforcement. The study provides evidence contrary to published literature characterizing PP as inert in such applications. Additionally, the study suggests the need for clinical trials comparatively investigating the performance of new types of monofilament prosthetics, such as those comprising PET.


Biomaterials Histological examination Pelvic floor disorders Polyester Polypropylene Vaginal surgery 



Pelvic floor disorder




Poly(ethylene terephthalate)


Polypropylene monofilament


Low density polypropylene monofilament


High density polypropylene monofilament


Nonknitted nonwoven polypropylene


Poly(glycolic acid)


Fourier transform infrared spectroscopy


Differential scanning calorimetry


Scanning electron microscopy



Many thanks to Jean-Pierre Laugier for his tremendous pedagogic work with SEM at the CCMA.

Conflicts of interest

The work and research of H. Yahi were supported by a grant from SOFRADIM; S. Montanari is an affiliate of Covidien; Henri Clavé has an educational position for Ethicon Europe.


  1. 1.
    Culligan PJ, Blackwell L, Goldsmith LJ, Graham CA, Rogers A, Heit MH (2005) A randomized controlled trial comparing fascia lata and synthetic mesh for sacral colpopexy. Obstet Gynecol 106:29–37PubMedGoogle Scholar
  2. 2.
    Karlovsky ME, Kushner L, Badlani GH (2005) Synthetic biomaterials for pelvic floor reconstruction. Curr Urol Rep 6:376–384CrossRefPubMedGoogle Scholar
  3. 3.
    Wu MP (2008) The use of prostheses in pelvic reconstructive surgery: joy or toy? Taiwan J Obstet Gynecol 47:151–156CrossRefPubMedGoogle Scholar
  4. 4.
    Debodinance P, Berrocal J, Clave H, Cosson M, Garbin O, Jacquetin B et al (2004) Changing attitudes on the surgical treatment of urogenital prolapse: birth of the tension-free vaginal mesh. J Gynecol Obstet Biol Reprod (Paris) 33:577–588Google Scholar
  5. 5.
    Bader G, Fauconnier A, Guyot B, Ville Y (2006) Use of prosthetic materials in reconstructive pelvic floor surgery. An evidence-based analysis. Gynecol Obstet Fertil 34:292–297CrossRefPubMedGoogle Scholar
  6. 6.
    Caquant F, Collinet P, Debodinance P, Berrocal J, Garbin O, Rosenthal C et al (2008) Safety of trans vaginal mesh procedure: retrospective study of 684 patients. J Obstet Gynaecol Res 34:449–456CrossRefPubMedGoogle Scholar
  7. 7.
    Deffieux X, de Tayrac R, Huel C, Bottero J, Gervaise A, Bonnet K et al (2007) Vaginal mesh erosion after transvaginal repair of cystocele using gynemesh or gynemesh-soft in 138 women: a comparative study. Int Urogynecol J Pelvic Floor Dysfunct 18:73–79CrossRefPubMedGoogle Scholar
  8. 8.
    Olsen AL, Smith VJ, Bergstrom JO, Colling JC, Clark AL (1997) Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet Gynecol 89:501–506CrossRefPubMedGoogle Scholar
  9. 9.
    Tsui KP, Ng SC, Tee YT, Yeh GP, Chen GD (2005) Complication of synthetic graft materials used in suburethral sling procedures. Int Urogynecol J Pelvic Floor Dysfunct 16:165–167CrossRefPubMedGoogle Scholar
  10. 10.
    Jia X, Glazener C, Mowatt G, MacLennan G, Bain C, Fraser C et al (2008) Efficacy and safety of using mesh or grafts in surgery for anterior and/or posterior vaginal wall prolapse: systematic review and meta-analysis. BJOG 115:1350–1361CrossRefPubMedGoogle Scholar
  11. 11.
    Feiner B, Jelovsek JE, Maher C (2009) Efficacy and safety of transvaginal mesh kits in the treatment of prolapse of the vaginal apex: a systematic review. BJOG 116:15–24PubMedGoogle Scholar
  12. 12.
    Amid PK, Lichtenstein IL (1997) current assessment of lichtenstein tension-free hernia repair. Chirurg 68:959–964CrossRefPubMedGoogle Scholar
  13. 13.
    Lefranc O, Bayon Y, Montanari S, Gravagna Ph (in press) Reinforcement materials in Soft Tissue Repair: Key paramaters controlling tolerance and performance-current and future trends in mesh development, in new techniques in genital prolapse surgery.Drs. Theobald P, Zimmerman CW, Davila GW (Eds.)Google Scholar
  14. 14.
    Caquant F, Collinet P, Deruelle P, Lucot JP, Cosson M (2005) Perineal cellulitis following trans-obturator sub-urethral tape uratape. Eur Urol 47:108–110CrossRefPubMedGoogle Scholar
  15. 15.
    Bafghi A, Valerio L, Benizri EI, Trastour C, Benizri EJ, Bongain A (2005) Comparison between monofilament and multifilament polypropylene tapes in urinary incontinence. Eur J Obstet Gynecol Reprod Biol 122:232–236CrossRefPubMedGoogle Scholar
  16. 16.
    Martin LK, Yang CQ (1994) Infrared spectroscopy of the photoxidation of a polyethylene nonwoven fabric. J Environ Polym Degrad 2(2):153–159CrossRefGoogle Scholar
  17. 17.
    Clayman HM (1981) Polypropylene. Ophthalmology 88:959–964PubMedGoogle Scholar
  18. 18.
    Costa L, Jacobson K, Bracco P, Brach del Prever EM (2002) Oxidation of orthopaedic uhmwpe. Biomaterials 23:1613–1624CrossRefPubMedGoogle Scholar
  19. 19.
    Bracco P, Brunella V, Trossarelli L, Coda A, Botto-Micca F (2005) Comparison of polypropylene and polyethylene terephthalate (dacron) meshes for abdominal wall hernia repair: a chemical and morphological study. Hernia 9:51–55CrossRefPubMedGoogle Scholar
  20. 20.
    Costello CR, Bachman SL, Grant SA, Cleveland DS, Loy TS, Ramshaw BJ (2007) Characterization of heavyweight and lightweight polypropylene prosthetic mesh explants from a single patient. Surg Innov. 14:168–176CrossRefPubMedGoogle Scholar
  21. 21.
    Coda A, Bendavid R, Botto-Micca F, Bossoti M, Bona A (2003) Structural alterations of prosthetic meshes in humans. Hernia 7:44–49Google Scholar
  22. 22.
    Debodinance P, Delporte P, Engrand J, Boulogne M (2002) Development of a better tolerated prosthetic materials: applications in gynecological surgery. J Gynecol Obstet Biol Reprod (Paris) 31:527–540Google Scholar
  23. 23.
    Altman AJ, Gorn RA, Craft J, Albert DM (1986) The breakdown of polypropylene in the human eye: is it clinically significant? Ann Ophthalmol 18:182–185PubMedGoogle Scholar
  24. 24.
    Jongebloed WL, Worst JF (1986) Degradation of polypropylene in the human eye: a SEM-study. Doc Ophthalmol 64:143–152CrossRefPubMedGoogle Scholar

Copyright information

© The International Urogynecological Association 2009

Authors and Affiliations

  • Arnaud Clavé
    • 1
  • Hannah Yahi
    • 2
  • Jean-Claude Hammou
    • 3
  • Suzelei Montanari
    • 4
  • Pierre Gounon
    • 5
  • Henri Clavé
    • 6
  1. 1.Service de Chirurgie (Pr Lefèvre)CHRU Brest Faculté de Médecine, Université de Bretagne OccidentaleBrestFrance
  2. 2.Service de Gynécologie (Pr Cosson)CHRU LilleLilleFrance
  3. 3.Laboratoire d’AnatomopathologieNiceFrance
  4. 4.Research and Development DepartmentCovidienTrévouxFrance
  5. 5.Centre Commun de Microscopie Appliquée (CCMA)Université de Nice Sophia-AntipolisNiceFrance
  6. 6.Département de Chirurgie GynécologiqueClinique Saint GeorgeNiceFrance

Personalised recommendations