International Urogynecology Journal

, Volume 17, Supplement 1, pp 16–25 | Cite as

The biology behind fascial defects and the use of implants in pelvic organ prolapse repair

  • Jan Deprest
  • Fang Zheng
  • Maja Konstantinovic
  • Federico Spelzini
  • Filip Claerhout
  • Anneke Steensma
  • Yves Ozog
  • Dirk De Ridder
2005 IUGA Grafts Roundtable

Abstract

Implant materials are increasingly being used in an effort to reduce recurrence after prolapse repair with native tissues. Surgeons should be aware of the biology behind both the disease as well as the host response to various implants. We will discuss insights into the biology behind hernia and abdominal fascial defects. Those lessons from “herniology” will, wherever possible, be applied to pelvic organ prolapse (POP) problems. Then we will deal with available animal models, for both the underlying disease and surgical repair. Then we will go over the features of implants and describe how the host responds to implantation. Methodology of such experiments will be briefly explained for the clinician not involved in experimentation. As we discuss the different materials available on the market, we will summarize some results of recent experiments by our group.

Keywords

Graft biology Vaginal prolapse Biologic implant Synthetic implant Surgical repair 

Notes

Acknowledgements

Our own animal research has been supported by unconditional grants from Tyco Healthcare, Bard, and Cook. The companies may also have donated standard commercially available implants for experimental implantation. None had input into the surgical protocols, randomization tables, or control on data analysis nor its reporting. The authors have no financial interests in these companies.

References

  1. 1.
    Wagh PV, Read RC (1971) Collagen deficiency in rectus sheath of patients with inguinal herniation. Proc Soc Exp Biol Med 137:382–384Google Scholar
  2. 2.
    Friedman DW, Boyd CD, Norton P et al (1993) Increases in type III collagen gene expression and protein synthesis in patients with inguinal hernias. Ann Surg 218:754–760PubMedCrossRefGoogle Scholar
  3. 3.
    Klinge U, Zheng H, Si ZY et al (1999) Expression of the extracellular matrix proteins collagen I, collagen III, fibrnectin and matrix metalloproteinase 1 and 13 in the skin of patients with inguinal hernia. Eur Surg Res 31:480–490PubMedCrossRefGoogle Scholar
  4. 4.
    He Y, Chen J, Ren J et al (2002) Type I collagen inhibits hydroxyl radical-induced apoptosis. J Biochem 132:373–379PubMedGoogle Scholar
  5. 5.
    Cannon DJ, Read RC (1981) Metastatic emphysema: e mechanism for acquiring inguinal herniation. Ann Surg 194:270–278PubMedCrossRefGoogle Scholar
  6. 6.
    Jackson SR, Avery NC, Tarlton JF et al (1996) Changes in metabolism of collagen in genitourinary prolapse. Lancet 347:1658–1661PubMedCrossRefGoogle Scholar
  7. 7.
    Bellon JM, Bajo A, Honduvilla NG et al (2001) Fibroblasts from the transversalis fascia of young patients with direct inguinal hernias show constitutive MMP-2 overexpression. Ann Surg 233:287–291PubMedCrossRefGoogle Scholar
  8. 8.
    Uden A, Lindhagen T (1988) Inguinal hernia in patients with congenital dislocation of the hip: a sign of general connective tissue disorder. Acta Orthop Scand 59:667–668PubMedCrossRefGoogle Scholar
  9. 9.
    Cannon DJ, Casteel L, Read RC (1984) Abdominal aortic aneurysm, Leriche syndrome, inguinal herniation and smoking. Arch Surg 119:387–389PubMedGoogle Scholar
  10. 10.
    Agren MS, Jorgensen LN, Andersen M et al (1998) Matrix metalloproteinase 9 level predicts optimal collagen deposition during early wound repair in humans. Br J Surg 85:68–71PubMedCrossRefGoogle Scholar
  11. 11.
    Bielicki K, Pulawski R (1988) Is cigarette smoking a causative factor in the development of inguinal hernia? Pol Tyg Lek 43:974–976Google Scholar
  12. 12.
    Christianson RE (1980) The relationship between maternal smoking and the incidence of congenital anomalies. Am J Epidemiol 112:684–695PubMedGoogle Scholar
  13. 13.
    Weber AM, Buchsbaum G, Chen B et al (2004) Basic science and translations research in female pelvic floor disorders: proceedings of an NIH-sponsored meeting. Neurourol Urodyn 23:288–301PubMedCrossRefGoogle Scholar
  14. 14.
    Rortveit G, Hannestad YS, Daltveit AK et al (2001) Age- and type-dependent effects of parity on urinary incontinence: the Norwegian EPINCONT study. Obstet Gynecol 98:1004–1010PubMedCrossRefGoogle Scholar
  15. 15.
    Sievert KD, Bekircioglu ME, Tsai T et al (2001) The effect of simulated birth trauma and/or ovariectomy on rodent continence mechanism. Part I: Functional and structural change. J Urol 166:311–317PubMedCrossRefGoogle Scholar
  16. 16.
    Cannon TW, Ferguson C, Wojcik EM et al (2002) Effects of vaginal distension on urethral anatomy and function. B J U Int 90:403–407Google Scholar
  17. 17.
    Damaser MS, Ferguson CL, Broxton-King C et al (2003) Functional and neuroanatomical effects of vaginal distension and pudendal nerve crush in the female rat. J Urol 170:1027–1031PubMedCrossRefGoogle Scholar
  18. 18.
    Moalli PA, Howden NS, Lowder J et al (2005) A rat model to study the structural properties of the vagina and its supportive tissues. Am J Obstet Gynecol 192:80–88PubMedCrossRefGoogle Scholar
  19. 19.
    Janssens LAA, Peeters S (1997) Comparisons between stress incontinence in women and sphincter mechanism incompetence in the female dog. Veter Rec 141:620–625Google Scholar
  20. 20.
    Clark AL, Otto LN, Slayden OD et al (2002) Raloxifene suppression of vaginal smooth muscle. In: Proceedings of the 23rd annual meeting of the American Urogynecologic Society (Abstract), San Francisco, USAGoogle Scholar
  21. 21.
    Coates KW, Gibson S, Williams LF et al (1995) The squirrel monkey as an animal model of pelvic relaxation: an evaluation of a large breeding colony. Am J Obstet Gynecol 173:1664–1669PubMedCrossRefGoogle Scholar
  22. 22.
    Pierce LM, Reyes M, Thor KB et al (2003) Innervation of the levator ani muscles in the female squirrel monkey. Am J Obstet Gynecol 188:1141–1147PubMedCrossRefGoogle Scholar
  23. 23.
    Mattson JA, Kuehl T, Yandell P et al (2005) Evaluation of the aged female baboon as a model of pelvic organ prolapse and pelvic reconstructive surgery. Am J Obstet Gynecol 192:1395–1398PubMedCrossRefGoogle Scholar
  24. 24.
    Klinge U, Conze J, Limberg W et al (1996) Pathophysiology of the abdominal wall. Chirurg 67:229–233PubMedGoogle Scholar
  25. 25.
    Junge K, Klinge U, Prescher A et al (2001) Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia 5:113–118PubMedCrossRefGoogle Scholar
  26. 26.
    Junge K, Peiper C, Rosch R et al (2002) Effect of tension induced by Shouldice repair on postoperative course and long-term outcome. Eur J Surg 168:329–333PubMedCrossRefGoogle Scholar
  27. 27.
    Seidel W, Tauber R, Hoffschulte KH (1974) Measurements of the solidity of sutures of the abdominal wall. Chirurg 45:266–272PubMedGoogle Scholar
  28. 28.
    Klosterhalfen B, Klinge U, Hermann SB, Schumpelick V (2000) Pathology of traditional surgical nets for hernia repair after long-term implantation in humans. Chirurg 71:43–51PubMedGoogle Scholar
  29. 29.
    Liles W, Van Voorhis WC (1995) Nomenclature and biological significance of cytokines involved in inflammation and host immune response. J Infect Dis 172:1573–1582PubMedGoogle Scholar
  30. 30.
    Vroman L, Adams AL (1969) Identification of absorbed protein films by exposure to antisera and water vapor. J Biomed Mater Res 3:669–671PubMedCrossRefGoogle Scholar
  31. 31.
    Tang L, Eaton JW (1993) Fibrinogen mediates acute inflammatory responses to biomaterials. J Exp Med 178:2147–2156PubMedCrossRefGoogle Scholar
  32. 32.
    Tang L, Eaton JW (1995) Inflammatory responses to biomaterials. Am J Clin Pathol 103:466–471PubMedGoogle Scholar
  33. 33.
    Horowitz SM, Gonzales JB (1997) Effects of polyethylene on macrophages. J Orthop Res 15:50–56PubMedCrossRefGoogle Scholar
  34. 34.
    Klosterhalfen B, Junge K, Hermanns B, Klinge U (2002) Influence of implantation interval on the long-term biocompatibility of surgical mesh. Br J Surg 89:1043–1048PubMedCrossRefGoogle Scholar
  35. 35.
    Junge KR (2002) Influence of mesh materials on collagen deposition in a rat model. J Invest Surg 15:319–328PubMedCrossRefGoogle Scholar
  36. 36.
    Klosterhalfen B, Klinge U, Schumpelick V (1998) Functional and morphological evaluation of different polypropylene-mesh modifications for abdominal wall repair. Biomaterials 19:2235–2246PubMedCrossRefGoogle Scholar
  37. 37.
    Besim H, Yalcin Y, Hamamci O et al (2002) Prevention of intra-abdominal adhesions produced by polypropylene mesh. Eur Surg Res 34:239–243PubMedCrossRefGoogle Scholar
  38. 38.
    Klinge U, Losterhalfe B, Birkenhaure V et al (2002) Impact of polymer pore size on the interface scar formation in a rat model. J Surg Res 10:208–214CrossRefGoogle Scholar
  39. 39.
    Bobyn JD, Wilson GJ, Macgregor DC, Pilaar PM, Weatherly GC (1982) Effect of pore size on the peel strength of attachment of fibrous tissue to porous-surfaced implants. Biomed Mater Res 16:571–584CrossRefGoogle Scholar
  40. 40.
    Pourdeyhimi B (1989) Porosity of surgical mesh fabrics: new technology. J Biomed Mater Res 23:145–152PubMedCrossRefGoogle Scholar
  41. 41.
    Beets GL, Go PM, van Mameren H (1996) Foreign body reactions to monofilament and braided polypropylene mesh used as preperitoneal implants in pigs. Eur J Surg 162:823–825PubMedGoogle Scholar
  42. 42.
    Rosch R, Junge K, Hölzl F et al (2004) How to construct a mesh. In: Schumpelick V, Nyhus LM (eds) Meshes: benefits and risks. Springer, Berlin Heidelberg New York, pp 179–184Google Scholar
  43. 43.
    Bellon JM, Contreras LA, Bujan J, Palomares D, Carrera-San Martin A (1998) Tissue response to polypropylene meshes used in the repair of abdominal wall defects. Biomaterials 19(7–9):669–675PubMedCrossRefGoogle Scholar
  44. 44.
    Alponat A, Lakshminarasappa SR, Yavuz N, Goh PM (1997) Prevention of adhesions by Seprafilm, an absorbable adhesion barrier: an incisional hernia model in rats. Am Surg 63(9):818–819PubMedGoogle Scholar
  45. 45.
    Claerhout F, Deprest J, Zheng F, Konstantinovic M, Lagae P, De Ridder D (2003) Long term evaluation of the tissue response and mechanical properties of two collagen based and polypropylene implants in a rabbit model for abdominal wall repair. Neurourol Urodyn 5:516–517Google Scholar
  46. 46.
    Walter A, Morse A, Leslie K et al (2003) Changes in tensile strength of cadaveric human fascia lata after implantation in a rabbit vagina model. Urology 169:1907–1910CrossRefGoogle Scholar
  47. 47.
    Zheng F, Lin Y, Verbeken E et al (2004) Host response after reconstruction of abdominal wall defects with porcine dermal collagen in a rat model. Am J Obstet Gynecol 191:1961–1970PubMedCrossRefGoogle Scholar
  48. 48.
    Allman AJ, McPherson TB, Badylak SF, Merrill LC, Kallakury B, Sheehan C, Raeder RH, Metzger DW (2001) Xenogeneic extracellular matrix grafts elicit a Th2-restricted immune response. Transplantation 71(11):1631–1640PubMedCrossRefGoogle Scholar
  49. 49.
    Chu CC, Welch L (1985) Characterisation of morphologic and mechanical properties of surgical mesh fabrics. J Biomed Mater Res 19:903–916PubMedCrossRefGoogle Scholar
  50. 50.
    Amid PK (1997) Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia 1:15–21CrossRefGoogle Scholar
  51. 51.
    Klinge U, Conze J, Limberg W, Brucker C, Ottinger AP, Schumpelick V (1996) Pathophysiology of the abdominal wall. Chirurg 67(3):229–233PubMedGoogle Scholar
  52. 52.
    Amid PK, Shulman AG, Lichtenstein IL (1992) Selecting synthetic mesh for the repair of groin hernia. Postgrad Gen Surg 4:150–155Google Scholar
  53. 53.
    Moriss–Stiff GJ, Hughes LE (1998) The outcomes of nonabsorbable mesh placed within the abdominal cavity: literature review and clinical experience. J Am Coll Surg 186(3):352–367CrossRefGoogle Scholar
  54. 54.
    Konstantinovic M, Pille E, Malinowska M, Verbeken E, De Ridder D, Deprest J (2005) Tensile strength and host response towards different polypropylene implant materials used for augmentation of fascial repair in a rat model. Int Urogynaecol J 16:S120–S121 (Abstract 375)Google Scholar
  55. 55.
    Leber GE, Garb JL, Alexander AI, Reed WP (1998) Long term complications associated with proesthetic repair of incisional hernias. Arch Surg 133:378–382PubMedCrossRefGoogle Scholar
  56. 56.
    Fitzgerald MP, Mollenhauer J, Bitterman P, Brubaker L (1999) Functional failure of fascia lata grafts. Am J Obstet Gynecol 181:1339–1346PubMedCrossRefGoogle Scholar
  57. 57.
    Buck BE, Malinin TI (1990) Human immunodeficiency virus cultured from bone: implications for transplantation. Clin Orthop 251:249–253PubMedGoogle Scholar
  58. 58.
    Clarke KM, Lantz GC, Salisbury SK, Badylak SF, Hiles MC, Voytik SL (1996) Intestine submucosa and polypropylene mesh for abdominal wall repair in dogs. J Surg Res 60:107–114PubMedCrossRefGoogle Scholar
  59. 59.
    Prevel CD, Eppley BL, Summerlin DJ, Jack JR, McCarty, Badylak SF (1995) Small intestinal submucosa: use in repair of rodent abdominal wall defects. Ann Plast Surg 35:374–380PubMedCrossRefGoogle Scholar
  60. 60.
    Badylak SF, Kokini K, Tullius B, Whitson B (2001) Strength over time of a resorbable bioscaffold for body wall repair in a dog model. J Surg Res 99:282–287PubMedCrossRefGoogle Scholar
  61. 61.
    Konstantinovic M, Lagae P, Zheng F, Verbeken E, De Ridder D, Deprest J (2005) Comparison of host response to polypropylene and non-cross linked porcine small intestine serosal derived collagen implants in a rat model. Br J Obstet Gynaecol 112:1–7Google Scholar
  62. 62.
    Zheng F, Verbeken E, De Ridder D, Deprest J (2005) Improved surgical outcome by modification of Pelvicol xenograft in abdominal wall reconstruction in rats. Neurourol Urodyn 24(4):362–368PubMedCrossRefGoogle Scholar
  63. 63.
    Hunt JA, Abrams KR, Williams DF (1994) Modelling the pattern of cell distribution around implanted materials. Anal Cell Pathol 7:43–52PubMedGoogle Scholar
  64. 64.
    Zheng F, Xu L, Verbeken E, De Ridder D, Deprest J (2004) Th1 vs Th2 Inflammatory responses to porcine dermal collagen and polyprolene implants in a mouse model. J Soc Gynecol Investig 11:271, 163AGoogle Scholar
  65. 65.
    de Tayrac R, Alves A, Thérin M (2005) Abstracts of 30th Annual Congress of the International Urogynaecology Association, Copenhaguen, Int Urogynecol J Pelvic Foor Dysfunct 16:S49, (abstract 61)Google Scholar

Copyright information

© International Urogynecology Journal 2006

Authors and Affiliations

  • Jan Deprest
    • 1
    • 2
  • Fang Zheng
    • 1
  • Maja Konstantinovic
    • 1
  • Federico Spelzini
    • 1
  • Filip Claerhout
    • 1
  • Anneke Steensma
    • 1
  • Yves Ozog
    • 1
  • Dirk De Ridder
    • 1
  1. 1.Centre for Surgical Technologies, Faculty of Medicine, and Pelvic Floor Centre, Departments of Obstetrics & Gynecology and UrologyUniversity Hospital “Gasthuisberg”, Katholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Centre for Surgical TechnologiesFaculteit Geneeskunde KU LeuvenLeuvenBelgium

Personalised recommendations