A bifurcation analysis of gender equality and fertility

  • Gustav Feichtinger
  • Alexia Prskawetz
  • Andrea Seidl
  • Christa Simon
  • Stefan Wrzaczek
Article

Abstract

In general, the spreading of gender egalitarianism has often been associated with a decline in fertility. However, recently a rebound in fertility has been observed in several industrialized countries. A possible explanation of this trend may be the spread of egalitarian values that induced institutional changes - such as expansion of child care facilities and father leave - and also changes in norms and values - such as gender equity in the distribution of domestic work - that foster the combination of parenthood and the egalitarian lifestyle. To study the diffusion from traditional to egalitarian gender-behavior and its impact on fertility a two-dimensional system of nonlinear ordinary differential equations is used. It is shown that the long-run development of the total fertility within a population not only depends on key parameters such as the pace of diffusion of egalitarianism and the extent to which social interactions affect the egalitarians’ birth rates, but also on the initial number of traditionalists and egalitarians. One of the main purposes of the present paper is to illustrate how bifurcation theory can be used to study the process of increasing gender equality and its implications on fertility.

Keywords

Bifurcation analysis History-dependence Gender egalitarianism Fertility Diffusion model Social interactions 

JEL Classification (2010)

J13 C61 J16 D63 

References

  1. Aassve A, Billari FC, Pessin L (2012) Trust and fertility dynamics. Dondena Working Papers No. 55Google Scholar
  2. Arpino B, Esping-Andersen G, Pessin L (2013) Changes in gender role attitudes and fertility: a macro-level analysis. Working PaperGoogle Scholar
  3. Baudin T (2010) A role for cultural transmission in fertility transitions. Macroecon Dyn 14(4):454–481CrossRefGoogle Scholar
  4. Billari F, Kohler H (2004) Patterns of low and lowest-low fertility in Europe. Popul Stud 58(2):161–176CrossRefGoogle Scholar
  5. Brewster KL, Rindfuss RR (2000) Fertility and women’s employment in industrialized nations. Ann Rev Sociol 26:271–296CrossRefGoogle Scholar
  6. Buber I, Neuwirth N (2009) Familienentwicklung in Österreich, Erste Ergebnisse des Generations and Gender Survey (GGS). Vienna. http://www.ggp-austria.at/fileadmin/ggp-austria/familienentwicklung.pdf. Accessed 29 Aug 2017
  7. Casterline JB (ed) (2001) Diffusion processes and fertility transition. National Academy Press, Washington, D.C.Google Scholar
  8. Ciabattari T (2001) Changes in men’s conservative gender ideologies: cohort and period influences. Gender Soc 15(4):574–591CrossRefGoogle Scholar
  9. Coale AJ, Watkins SC (1986) The decline of fertility in Europe. Princeton University Press, PrincetonGoogle Scholar
  10. Conrad C, Lechner M, Werner W (1996) East german fertility after unification: crisis or adaptation? Popul Dev Rev 22(2):331–358CrossRefGoogle Scholar
  11. Davis S, Greenstein T (2009) Gender ideology: components, predictors, and consequences. Annu Rev Sociol 35:87–105CrossRefGoogle Scholar
  12. Dhooge A, Govaerts W, Kuznetsov Y (2003) MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans Math Softw (TOMS) 29(2):141–164CrossRefGoogle Scholar
  13. Dhooge A, Govaerts W, Kuznetsov YA, Mestrom W, Riet AM, Sautois B (2006) MATCONT and CL_MATCONT: continuation toolboxes in MATLAB. Online manual; https://www.researchgate.net/publication/265036686_MATCONT_and_CL_MATCONT_Continuation_toolboxes_in_matlab. Accessed 29 Aug 2017
  14. Esping-Andersen G (2009) The incomplete revolution. Polity Press, CambridgeGoogle Scholar
  15. Esping-Andersen G, Billari FC (2015) Re-theorizing family demographics. Popul Dev Rev 41(1):1–31CrossRefGoogle Scholar
  16. Esping-Andersen G, Boertien D, Bonke J, Garcia P (2012) Couple specialization in multiple equilibria. Working PaperGoogle Scholar
  17. Feichtinger G, Prskawetz A, Seidl A, Simon C, Wrzaczek S (2013) Do egalitarian societies boost fertility? VID Working Paper 02/2013. Vienna Institute of DemographyGoogle Scholar
  18. García-Manglano J, Nollenberger N, Sevilla A (2014) Gender, time-use, and fertility recovery in industrialized countries. Technical report. IZA Discussion Paper No. 8613Google Scholar
  19. Grass D, Caulkins JP, Feichtinger G, Tragler G, Behrens DA (2008) Optimal control of nonlinear processes: with applications in drugs corruption and terror. Springer, HeidelbergCrossRefGoogle Scholar
  20. Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, vol 42. Springer, New YorkCrossRefGoogle Scholar
  21. Heran F (2013) Fertility and family-support policies: what can we learn from the European experience? Keynote speech, opening ceremony of the 27th international population conference IUSSP. BusanGoogle Scholar
  22. Lopez-Pintado D, Watts D (2008) Social influence, binary decisions and collective dynamics. Ration Soc 20(4):399–443CrossRefGoogle Scholar
  23. Luci-Greulich A, Thévenon O (2013) The impact of family policies on fertility trends in developed countries. Eur J Popul/Revue européenne de Démographie 29(4):387–416CrossRefGoogle Scholar
  24. McDonald P (2000) Gender equity in theories of fertility transition. Popul Develop Rev 26(3):427–439CrossRefGoogle Scholar
  25. McDonald P (2013) Societal foundations for explaining low fertility: gender equity. Demogr Res 28(34):981–994CrossRefGoogle Scholar
  26. Myrskylä M, Kohler HP, Billari FC (2009) Advances in development reverse fertility declines. Nature 460(7256):741–743CrossRefGoogle Scholar
  27. Neyer G, Lappegård T, Vignoli D (2013) Gender equality and fertility: Which equality matters? Eur J Popul/Revue europé,enne de Démographie 29(3):245–272Google Scholar
  28. Oláh LS (2003) Gendering fertility: second births in Sweden and Hungary. Popul Res Policy Rev 22(2):171–200CrossRefGoogle Scholar
  29. Oláh LS (2011) Should governments in Europe be more aggressive in pushing for gender equality to raise fertility? The second ”YES”. Demogr Res 24(9):217–224CrossRefGoogle Scholar
  30. Rogers E (2003) Diffusion of innovations, 5th edn. Free PressGoogle Scholar
  31. Seidl A, Steindl A, Feichtinger G (2015) Degenerated Hopf bifurcations in a demographic diffusion model. In: Prager W, Schwaiger J, Tomaschek J (eds) Ludwig Reich 75. A tribute by students, colleagues and friends. ISSN 1016-7692. Grazer Math.Ber., Bericht Nr., p 363Google Scholar
  32. Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Addison-Wesley, ReadingGoogle Scholar
  33. Testa MR, Cavalli L, Rosina A (2014) The effect of couple disagreement about child-timing intentions: a parity-specific approach. Popul Dev Rev 40(1):31–53CrossRefGoogle Scholar
  34. Torr BM, Short SE (2004) Second births and the second shift: a research note on gender equity and fertility. Popul Develop Rev 30(1):109–130CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Gustav Feichtinger
    • 1
    • 2
  • Alexia Prskawetz
    • 1
    • 2
  • Andrea Seidl
    • 3
  • Christa Simon
    • 1
  • Stefan Wrzaczek
    • 2
  1. 1.Institute of Statistics and Mathematical Methods in EconomicsVienna University of TechnologyViennaAustria
  2. 2.Wittgenstein Centre for Demography and Global Human Capital (IIASA, VID/ÖAW, WU)Vienna Institute of Demography/Austrian Academy of SciencesViennaAustria
  3. 3.Department of Business AdministrationUniversity of ViennaViennaAustria

Personalised recommendations