Advertisement

Journal of Geodesy

, Volume 93, Issue 10, pp 2003–2017 | Cite as

Correcting surface loading at the observation level: impact on global GNSS and VLBI station networks

  • Benjamin MännelEmail author
  • Henryk Dobslaw
  • Robert Dill
  • Susanne Glaser
  • Kyriakos Balidakis
  • Maik Thomas
  • Harald Schuh
Original Article
  • 278 Downloads

Abstract

Time-dependent mass variations of the near-surface geophysical fluids in atmosphere, oceans and the continental hydrosphere lead to systematic and significant load-induced deformations of the Earth’s crust. The Earth System Modeling group of Deutsches GeoForschungsZentrum (ESMGFZ) provides vertical and horizontal surface deformations based on numerical models of the global geophysical fluids in atmosphere, oceans and the continental hydrosphere with a spatial resolution of \(0.5^\circ \) and a temporal sampling of down to 3 h (Dill and Dobslaw in J Geophys Res 118(9):5008–5017, 2013.  https://doi.org/10.1002/jgrb.50353). The assessment of conventionally—i.e. without consideration of non-tidal loading models—processed global GNSS datasets reveals that large parts of the residual station coordinates are indeed related to surface loading effects. Residuals explained by the models often have a pronounced annual component, but variability at other periodicities also contributes to generally high correlations for 7-day averages. More than 10 years of observations from about 400 GNSS and 33 VLBI stations were specifically reprocessed for this study to incorporate non-tidal loading correction models at the observation level. Comparisons with the corresponding conventional processing schemes indicate that the coordinate repeatabilities and residual annual amplitudes decrease by up to 13 mm and 7 mm, respectively, when ESMGFZ’s loading models are applied. In addition, the standard deviation of the daily estimated vertical coordinate is reduced by up to 6.8 mm. The network solutions also allow for an assessment of surface loading effects on GNSS satellite orbits, resulting in radial translations of up to 4 mm and Earth orientation parameters (EOP). In particular, the VLBI-based EOP estimates are critically susceptible to surface loading effects, with root-mean-squared differences reaching of up to 0.2 mas for polar motion, and 10 µs for UT1-UTC.

Keywords

GNSS VLBI Non-tidal surface loading GNSS orbits Polar motion 

Notes

Acknowledgements

The authors want to thank IGS and IVS for making publicly available GNSS and VLBI observations. All geophysical loading models evaluated herein can be accessed at https://isdc.gfz-potsdam.de/esmdata/loading/. We would also like to thank three anonymous reviewers for their assistance in evaluating this paper and their helpful recommendations.

Author Contributions

HD, BM, and SG defined the study. BM and KB processed the GNSS and VLBI data. All authors contributed to the analysis, interpretation, and discussion of the results. BM prepared the manuscript with major contributions from RD, HD, SG, and KB and inputs from all authors. All authors read and approved the final manuscript.

References

  1. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the International Terrestrial Reference Frame modeling non-linear station motions. J Geophys Res 121:6109–6131.  https://doi.org/10.1002/2016JB013098 CrossRefGoogle Scholar
  2. Balidakis K, Nilsson T, Zus F, Glaser S, Heinkelmann R, Deng Z, Schuh H (2018) Estimating Integrated Water Vapor Trends From VLBI, GPS, and Numerical Weather Models: Sensitivity to Tropospheric Parameterization. J Geophys Res Atmos 123(12):6356–6372.  https://doi.org/10.1029/2017JD028049 CrossRefGoogle Scholar
  3. Bevis M, Alsdorf D, Kendrick E, Fortes LP, Forsberg B, Smalley R, Becker J (2005) Seasonal fluctuations in the mass of the Amazon River system and Earth’s elastic response. Geophys Res Lett 32(16):L16308.  https://doi.org/10.1029/2005GL023491 CrossRefGoogle Scholar
  4. Blewitt G, Lavallee D (2002) Effect of annual signals on geodetic velocity. J Geophy Res 107(B7):ETG 9–1–ETG 9–11.  https://doi.org/10.1029/2001JB000570 CrossRefGoogle Scholar
  5. Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and VLBI from European Centre for medium-range weather forecasts operational analysis data. J Geophy Res 111(B2):B02406.  https://doi.org/10.1029/2005JB003629 CrossRefGoogle Scholar
  6. Böhm J, Heinkelmann R, Mendes Cerveira PJ, Pany A, Schuh H (2009) Atmospheric loading corrections at the observation level in VLBI analysis. J Geod 83(11):1107.  https://doi.org/10.1007/s00190-009-0329-y CrossRefGoogle Scholar
  7. Dach R, Böhm J, Lutz S, Steigenberger P, Beutler G (2011) Evaluation of the impact of atmospheric pressure loading modeling on GNSS data analysis. J Geod 85(2):75–91.  https://doi.org/10.1007/s00190-010-0417-z CrossRefGoogle Scholar
  8. Dill R (2008) Hydrological model LSDM for operational Earth rotation and gravity field variations. Scientific technical report STR, vol 369. GFZGoogle Scholar
  9. Dill R, Dobslaw H (2013) Numerical simulations of global-scale high-resolution hydrological crustal deformations. J Geophys Res 118(9):5008–5017.  https://doi.org/10.1002/jgrb.50353 CrossRefGoogle Scholar
  10. Dill R, Klemann V, Dobslaw H (2018) Relocation of River Storage From Global Hydrological Models to Georeferenced River Channels for Improved Load-Induced Surface Displacements. J Geophys Res Solid Earth 123(8):7151–7164.  https://doi.org/10.1029/2018JB016141 CrossRefGoogle Scholar
  11. Dobslaw H, Dill R, Grötzsch A, Brzezinski A, Thomas M (2010) Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere. J Geophys Res Solid Earth.  https://doi.org/10.1029/2009JB007127 CrossRefGoogle Scholar
  12. Dobslaw H, Bergmann-Wolf I, Dill R, Poropat L, Thomas M, Dahle C, Esselborn S, König R, Flechtner F (2017) A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophys J Int 211:263–269.  https://doi.org/10.1093/gji/ggx302 CrossRefGoogle Scholar
  13. Dong D, Fang P, Bock Y, Cheng MK, Miyazaki S (2002) Anatomy of apparent seasonal variations from gps-derived site position time series. J Geophys Res 107(B4):ETG 9–1–ETG 9–16.  https://doi.org/10.1029/2001JB000573 CrossRefGoogle Scholar
  14. Farrell W (1972) Deformation of the Earth by surface loads. Rev Geophys 10(3):761–797.  https://doi.org/10.1029/RG010i003p00761 CrossRefGoogle Scholar
  15. Gegout P, Boy JP, Hinderer J, Ferhat G (2010) Modeling and observation of loading contribution to time-variable GPS sites positions. In: Mertikas SP (ed) Gravity, geoid and Earth observation. Springer, Berlin, pp 651–659CrossRefGoogle Scholar
  16. Jungclaus JH, Fischer N, Haak H, Lohmann K, Marotzke J, Matei D, Mikolajewicz U, Notz D, von Storch JS (2013) Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J Adv Model Earth Syst 5(2):422–446.  https://doi.org/10.1002/jame.20023 CrossRefGoogle Scholar
  17. Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the Earth from traveltimes. Geophys J Int 122(1):108–124.  https://doi.org/10.1111/j.1365-246X.1995.tb03540.x CrossRefGoogle Scholar
  18. Lambeck K (1988) Geophysical geodesy. Clarendon Press, New YorkGoogle Scholar
  19. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415.  https://doi.org/10.1007/s10236-006-0086-x CrossRefGoogle Scholar
  20. Männel B, Rothacher M (2017) Geocenter variations derived from a combined processing of LEO- and ground-based GPS observations. J Geod 91(8):933–944.  https://doi.org/10.1007/s00190-017-0997-y CrossRefGoogle Scholar
  21. Nilsson T, Soja B, Karbon M, Heinkelmann R, Schuh H (2015) Application of Kalman filtering in VLBI data analysis. Earth Planets Space 67(1):136.  https://doi.org/10.1186/s40623-015-0307-y CrossRefGoogle Scholar
  22. Nahmani S, Bock O, Bouin MN, Santamaría-Gómez A, Boy JP, Collilieux X, Métivier L, Panet I, Genthon P, de Linage C, Wöppelmann G (2012) Hydrological deformation induced by the West African Monsoon: comparison of GPS. J Geophys Res Solid Earth, GRACE and loading models.  https://doi.org/10.1029/2011JB009102 CrossRefGoogle Scholar
  23. Nordman M, Virtanen H, Nyberg S, Mäkinen J (2015) Non-tidal loading by the Baltic Sea: comparison of modelled deformation with GNSS time series. Geophys Res J 7:14–21.  https://doi.org/10.1016/j.grj.2015.03.002 CrossRefGoogle Scholar
  24. Peltier A, Got JL, Villeneuve N, Boissier P, Staudacher T, Ferrazzini V, Walpersdorf A (2015) Long-term mass transfer at Piton de la Fournaise volcano evidenced by strain distribution derived from GNSS network. J Geophys Res 120(3):1874–1889.  https://doi.org/10.1002/2014JB011738 CrossRefGoogle Scholar
  25. Petit G, Luzum B (2010) IERS conventions. IERS technical note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main. ISBN 3-89888-989-6Google Scholar
  26. Petrov L, Boy JP (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109(B3):B03405.  https://doi.org/10.1029/2003JB002500 CrossRefGoogle Scholar
  27. Rabbel W, Schuh H (1986) The Influence of Atmospheric Loading on VLBI-Experiments. J Geophys 59(3):164–170Google Scholar
  28. Ray R, Ponte R (2003) Barometric tides from ECMWF operational analyses. Ann Geophys 21(8):1897–1910CrossRefGoogle Scholar
  29. Roggenbuck O, Thaller D, Engelhardt G, Franke S, Dach R, Steigenberger P (2015) Loading-induced deformation due to atmosphere, ocean and hydrology: model comparisons and the impact on global SLR. VLBI and GNSS solutions. Springer, Berlin, pp 1–7.  https://doi.org/10.1007/1345_2015_214 CrossRefGoogle Scholar
  30. Schuh H, Möhlmann L (1989) Estimating Integrated Water Vapor Trends From VLBI, GPS, and Numerical Weather Models: Sensitivity to Tropospheric Parameterization. Geophys Res Lett 16(10):1105–1108CrossRefGoogle Scholar
  31. Sośnica K, Jäggi A, Meyer U, Thaller D, Beutler G, Arnold D, Dach R (2015) Time variable Earth’s gravity field from SLR satellites. J Geod.  https://doi.org/10.1007/s00190-015-0825-1 CrossRefGoogle Scholar
  32. Steigenberger P, Böhm J, Tesmer V (2009) Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J Geod 83(10):943.  https://doi.org/10.1007/s00190-009-0311-8 CrossRefGoogle Scholar
  33. Tregoning P, van Dam T (2005) Effects of atmospheric pressure loading and seven-parameter transformations on estimates of geocenter motion and station heights from space geodetic observations. J Geophys Res.  https://doi.org/10.1029/2004JB003334 CrossRefGoogle Scholar
  34. van Dam T, Collilieux X, Wuite J, Altamimi Z, Ray J (2012) Non-tidal ocean loading: amplitudes and potential effects in GPS height time series. J Geod 86(11):1043–1057.  https://doi.org/10.1007/s00190-012-0564-5 CrossRefGoogle Scholar
  35. Williams SDP, Penna NT (2011) Non-tidal ocean loading effects on geodetic GPS heights. Geophys Res Lett.  https://doi.org/10.1029/2011GL046940 CrossRefGoogle Scholar
  36. Yan T, Lim S, Rizos C (2009) Performance analysis of real-time GNSS data distribution over the internet. In: Proceedings of SSC2009, Adelaide, Australia, vol 28, pp 491–502Google Scholar
  37. Zus F, Dick G, Douša J, Heise S, Wickert J (2014) The rapid and precise computation of GPS slant total delays and mapping factors utilizing a numerical weather model. Radio Sci 49(3):207–216.  https://doi.org/10.1002/2013RS005280 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Deutsches GeoForschungsZentrum GFZPotsdamGermany
  2. 2.Institute of MeteorologyFreie Universität BerlinBerlinGermany
  3. 3.Institute of Geodesy and Geoinformation ScienceTechnische Universität BerlinBerlinGermany

Personalised recommendations