Advertisement

Journal of Geodesy

, Volume 93, Issue 10, pp 2145–2153 | Cite as

Evidence of daily hydrological loading in GPS time series over Europe

  • Anne SpringerEmail author
  • Makan A. Karegar
  • Jürgen Kusche
  • Jessica Keune
  • Wolfgang Kurtz
  • Stefan Kollet
Short Note

Abstract

Loading deformations from atmospheric, oceanic, and hydrological mass changes mask geophysical processes such as land subsidence and tectonic or volcanic deformation. While it is known that hydrological loading plays a role at seasonal time scales, here we demonstrate evidence that also fast water storage changes contribute to daily Global Positioning System (GPS) height time series. So far, no clear strategy, i.e., no single conventional hydrological model, has been proposed for removing hydrological deformation from daily GPS height time series. Hydrological model predictions of total water storage anomalies tend to diverge and (substantially) deviate from Gravity Recovery and Climate Experiment (GRACE) observations, which however have a limited spatial and temporal resolution. Here, we suggest to overcome these limitations by assimilating GRACE data into a high-resolution (12.5 km) hydrological model. We tested this approach over Europe, and we found that accounting for daily hydrological mass changes reduces the root mean square scatter of GPS height time series almost by a factor of two when compared to monthly hydrological mass changes. We suggest that a GRACE-assimilating hydrological model would provide a promising option for removing hydrology-induced vertical deformation from GPS time series also at the global scale.

Keywords

GPS Vertical deformation Hydrogeodesy GRACE Assimilation 

Notes

Acknowledgements

We thank Matt King and three anonymous reviewers, whose thoughtful comments improved the manuscript. GRACE solutions were obtained from the ITSG (https://www.tugraz.at/institutes/ifg/downloads/gravity-field-models/itsg-grace2016/). The GPS time series are available in SINEX format through the EPN website (ftp://igs.bkg.bund.de/EPNrepro2/products/).

Author Contributions

Anne Springer performed the assimilation of GRACE data into CLM3.5 to produce the high-resolution total water storage reanalysis over Europe and wrote the manuscript. Makan Karegar analyzed the GPS time series, modeled the deformation and helped write the manuscript. Jürgen Kusche contributed to the interpretation of the results and helped improve the manuscript. Jessica Keune and Stefan Kollet performed the initial setup of the CLM3.5 model over Europe. Wolfgang Kurtz set up the interface between CLM3.5 and the parallel data assimilation framework (PDAF).

Supplementary material

190_2019_1295_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (pdf 1282 KB)

References

  1. Argus DF, Fu Y, Landerer FW (2014) Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion. Geophys Res Lett 41(6):1971–1980.  https://doi.org/10.1002/2014GL059570 CrossRefGoogle Scholar
  2. Argus DF, Landerer FW, Wiese DN, Martens HR, Fu Y, Famiglietti JS, Thomas BF, Farr TG, Moore AW, Watkins MM (2017) Sustained water loss in California’s mountain ranges during severe drought from 2012 to 2015 inferred from GPS. J Geophys Res: Solid Earth 122(12):10559–10585.  https://doi.org/10.1002/2017JB014424 CrossRefGoogle Scholar
  3. Bennett RA (2008) Instantaneous deformation from continuous GPS: contributions from quasi-periodic loads. Geophys J Int 174(3):1052–1064.  https://doi.org/10.1111/j.1365-246X.2008.03846.x CrossRefGoogle Scholar
  4. Bevis M, Alsdorf D, Kendrick E, Fortes LP, Forsberg B, Smalley R, Becker J (2005) Seasonal fluctuations in the mass of the Amazon River system and Earth’s elastic response. Geophys Res Lett.  https://doi.org/10.1029/2005GL023491 CrossRefGoogle Scholar
  5. Bos MS, Bastos L, Fernandes RMS (2010) The influence of seasonal signals on the estimation of the tectonic motion in short continuous GPS time-series. J Geodyn 49(3):205–209.  https://doi.org/10.1016/j.jog.2009.10.005 CrossRefGoogle Scholar
  6. Chanard K, Fleitout L, Calais E, Rebischung P, Avouac JP (2018) Toward a global horizontal and vertical elastic load deformation model derived from GRACE and GNSS station position time series. J Geophys Res: Solid Earth 123(4):3225–3237.  https://doi.org/10.1002/2017JB015245 CrossRefGoogle Scholar
  7. Clarke PJ (2018) Seasonal surface loading helps constrain short-term viscosity of the asthenosphere. Geophys Res Lett 45(5):2349–2351.  https://doi.org/10.1002/2018GL077494 CrossRefGoogle Scholar
  8. Davis JL, Elósegui P, Mitrovica JX, Tamisiea ME (2004) Climate-driven deformation of the solid Earth from GRACE and GPS. Geophys Res Lett.  https://doi.org/10.1029/2004GL021435 CrossRefGoogle Scholar
  9. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270:105–134.  https://doi.org/10.1016/S0022-1694(02)00283-4 CrossRefGoogle Scholar
  10. Dill R, Dobslaw H (2013) Numerical Simulations of Global-Scale High-Resolution Hydrological Crustal Deformations. J Geophys Res: Solid Earth 118:5008–5017CrossRefGoogle Scholar
  11. Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25(4):297–356.  https://doi.org/10.1016/0031-9201(81)90046-7 CrossRefGoogle Scholar
  12. Eicker A, Springer A (2016) Monthly and sub-monthly hydrological variability: in-orbit validation by GRACE level 1B observations. J Geodesy 90(6):573–584.  https://doi.org/10.1007/s00190-016-0895-8 CrossRefGoogle Scholar
  13. Eicker A, Schumacher M, Kusche J, Döll P, Schmied HM (2014) Calibration/data assimilation approach for integrating GRACE data into the WaterGAP global hydrology model (WGHM) using an ensemble kalman filter: first results. Surv Geophys 35:1285–1309CrossRefGoogle Scholar
  14. Farrell WE (1972) Deformation of the Earth by surface loads. Rev Geophys 10(3):761.  https://doi.org/10.1029/RG010i003p00761 CrossRefGoogle Scholar
  15. Flechtner F, Dobslaw H, Fagiolini E (2015) AOD1B Product Description Document for Product Release 05. Technical Report GRACE 327 - 750 (GR-GFZ-AOD-0001)Google Scholar
  16. Fritsche M, Döll P, Dietrich R (2012) Global-scale validation of model-based load deformation of the Earth’s crust from continental watermass and atmospheric pressure variations using GPS. J Geodyn 59–60:133–142.  https://doi.org/10.1016/j.jog.2011.04.001 CrossRefGoogle Scholar
  17. Fu Y, Freymueller JT, Jensen T (2012) Seasonal hydrological loading in southern Alaska observed by GPS and GRACE. Geophys Res Lett.  https://doi.org/10.1029/2012GL052453 CrossRefGoogle Scholar
  18. Fu Y, Argus DF, Freymueller JT, Heflin MB (2013) Horizontal motion in elastic response to seasonal loading of rain water in the Amazon Basin and monsoon water in Southeast Asia observed by GPS and inferred from GRACE. Geophys Res Lett 40(23):6048–6053.  https://doi.org/10.1002/2013GL058093 CrossRefGoogle Scholar
  19. Geng J, Williams SDP, Teferle FN, Dodson AH (2012) Detecting storm surge loading deformations around the southern North Sea using subdaily GPS. Geophys J Int 191(2):569–578.  https://doi.org/10.1111/j.1365-246X.2012.05656.x CrossRefGoogle Scholar
  20. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183Google Scholar
  21. Girotto M, De Lannoy GJM, Reichle RH, Rodell M, Draper C, Bhanja SN, Mukherjee A (2017) Benefits and pitfalls of GRACE data assimilation: a case study of terrestrial water storage depletion in India. Geophys Res Lett 44(9):4107–4115.  https://doi.org/10.1002/2017GL072994 CrossRefGoogle Scholar
  22. Henderson S, Pritchard E (2017) Time-dependent deformation of uturuncu volcano, Bolivia, constrained by GPS and insar measurements and implications for source models. Geosphere 13(6):1834–1854.  https://doi.org/10.1130/GES01203.1 CrossRefGoogle Scholar
  23. Herring TA, Melbourne TI, Murray MH, Floyd MA, Szeliga WM, King RW, Phillips DA, Puskas CM, Santillan M, Wang L (2016) Plate boundary observatory and related networks: GPS data analysis methods and geodetic products. Rev Geophys 54(4):759–808.  https://doi.org/10.1002/2016RG000529 CrossRefGoogle Scholar
  24. Hirt C, Featherstone WE, Claessens SJ (2011) On the accurate numerical evaluation of geodetic convolution integrals. J Geod 85(8):519–538.  https://doi.org/10.1007/s00190-011-0451-5 CrossRefGoogle Scholar
  25. Hunt BR, Kostelich EJ, Szunyogh I (2007) Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Physica D 230(1):112–126.  https://doi.org/10.1016/j.physd.2006.11.008 CrossRefGoogle Scholar
  26. Ihde J, Habrich H, Sacher M, Söhne W, Altamimi Z, Brockmann E, Bruyninx C, Caporali A, Dousa J, Fernandes R, Hornik H, Kenyeres A, Lidberg M, Mäkinen J, Poutanen M, Stangl G, Torres JA, Völksen C (2014) EUREF’s contribution to national, European and global geodetic infrastructures. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet. International association of geodesy symposia. Springer, Berlin, pp 189–196CrossRefGoogle Scholar
  27. Karegar MA, Dixon TH, Malservisi R, Yang Q, Hossaini SA, Hovorka SD (2015) GPS-based monitoring of surface deformation associated with CO\(_2\) injection at an enhanced oil recovery site. Int J Greenhouse Gas Control 41:116–126.  https://doi.org/10.1016/j.ijggc.2015.07.006 CrossRefGoogle Scholar
  28. Karegar MA, Dixon TH, Engelhart SE (2016) Subsidence along the Atlantic Coast of North America: Insights from GPS and late Holocene relative sea level data. Geophys Res Lett 43(7):3126–3133.  https://doi.org/10.1002/2016GL068015 CrossRefGoogle Scholar
  29. Karegar MA, Dixon TH, Kusche J, Chambers DP (2018) A new hybrid method for estimating hydrologically induced vertical deformation from GRACE and a hydrological model: an example from central North America. J Adv Model Earth Syst 10(5):1196–1217.  https://doi.org/10.1029/2017MS001181 CrossRefGoogle Scholar
  30. Khaki M, Hoteit I, Kuhn M, Awange J, Forootan E, van Dijk AIJM, Schumacher M, Pattiaratchi C (2017) Assessing sequential data assimilation techniques for integrating GRACE data into a hydrological model. Adv Water Resour 107:301–316.  https://doi.org/10.1016/j.advwatres.2017.07.001 CrossRefGoogle Scholar
  31. Klein E, Duputel Z, Zigone D, Vigny C, Boy JP, Doubre C, Meneses G (2018) Deep transient slow slip detected by survey GPS in the region of Atacama, Chile. Geophys Res Lett 45(22):12263–12273.  https://doi.org/10.1029/2018GL080613 CrossRefGoogle Scholar
  32. Kurtz W, He G, Kollet SJ, Maxwell RM, Vereecken H, Franssen HJH (2016) TerrSysMP–PDAF (version 1.0): a modular high-performance data assimilation framework for an integrated land surface–subsurface model. Geosci Model Dev 9:1341–1360CrossRefGoogle Scholar
  33. Kusche J, Schrama EJO (2005) Surface mass redistribution inversion from global GPS deformation and gravity recovery and climate experiment (GRACE) gravity data. Solid Earth, J Geophys Res.  https://doi.org/10.1029/2004JB003556 CrossRefGoogle Scholar
  34. Martens HR, Rivera L, Simons M, Ito T (2016) The sensitivity of surface mass loading displacement response to perturbations in the elastic structure of the crust and mantle. J Geophys Res: Solid Earth 121(5):3911–3938.  https://doi.org/10.1002/2015JB012456 CrossRefGoogle Scholar
  35. Mayer-Gürr T, Behzadpour S, Ellmer M, Kvas A, Klinger B, Zehentner N (2016) ITSG-Grace2016—monthly and daily gravity field solutions from GRACE. GFZ Data Serv.  https://doi.org/10.5880/icgem.2016.007 CrossRefGoogle Scholar
  36. Meur EL, Hindmarsh RCA (2000) A comparison of two spectral approaches for computing the Earth response to surface loads. Geophys J Int 141(2):282–298.  https://doi.org/10.1046/j.1365-246x.2000.00068.x CrossRefGoogle Scholar
  37. Mitrovica JX, Davis JL, Shapiro II (1994) A spectral formalism for computing three-dimensional deformations due to surface loads: 1. Theory. J Geophys Res: Solid Earth 99(B4):7057–7073.  https://doi.org/10.1029/93JB03128 CrossRefGoogle Scholar
  38. Nahmani S, Bock O, Bouin MN, Santamaría-Gómez A, Boy JP, Collilieux X, Métivier L, Panet I, Genthon P, de Linage C, Wöppelmann G (2012) Hydrological deformation induced by the West African Monsoon: comparison of GPS, GRACE and loading models. Solid Earth, J Geophys Res.  https://doi.org/10.1029/2011JB009102 CrossRefGoogle Scholar
  39. Nerger L, Hiller W (2013) Software for ensemble-based data assimilation systems—implementation strategies and scalability. Comput Geosci 55:110–118.  https://doi.org/10.1016/j.cageo.2012.03.026 CrossRefGoogle Scholar
  40. Pacione R, Araszkiewicz A, Brockmann E, Dousa J (2017) EPN-Repro2: a reference GNSS tropospheric data set over Europe. Atmos Meas Tech 10:1689–1705.  https://doi.org/10.5194/amt-10-1689-2017 CrossRefGoogle Scholar
  41. Scanlon BR, Zhang Z, Save H, Sun AY, Schmied HM, van Beek LPH, Wiese DN, Wada Y, Long D, Reedy RC, Longuevergne L, Döll P, Bierkens MFP (2018) Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. PNAS 115(6):E1080–E1089.  https://doi.org/10.1073/pnas.1704665115 CrossRefGoogle Scholar
  42. Shrestha P, Sulis M, Masbou M, Kollet S, Simmer C (2014) A scale-consistent terrestrial systems modeling platform based on COSMO, CLM, and ParFlow. Mon Weather Rev 142:3466–3483CrossRefGoogle Scholar
  43. Springer A (2019) A water storage reanalysis over the European continent: assimilation of GRACE data into a high-resolution hydrological model and validation. PhD thesis, Bonn University, BonnGoogle Scholar
  44. Tangdamrongsub N, Steele-Dunne SC, Gunter BC, Ditmar PG, Weerts AH (2015) Data assimilation of GRACE terrestrial water storage estimates into a regional hydrological model of the Rhine River basin. Hydrol Earth Syst Sci 19:2079–2100CrossRefGoogle Scholar
  45. Tesmer V, Steigenberger P, van Dam T, Mayer-Gürr T (2011) Vertical deformations from homogeneously processed GRACE and global GPS long-term series. J Geod 85(5):291–310.  https://doi.org/10.1007/s00190-010-0437-8 CrossRefGoogle Scholar
  46. Tregoning P, Watson C, Ramillien G, McQueen H, Zhang J (2009) Detecting hydrologic deformation using GRACE and GPS. Geophys Res Lett.  https://doi.org/10.1029/2009GL038718 CrossRefGoogle Scholar
  47. van Dam T, Wahr J, Lavallée D (2007) A comparison of annual vertical crustal displacements from GPS and gravity recovery and climate experiment (GRACE) over Europe. Solid Earth, J Geophys Res.  https://doi.org/10.1029/2006JB004335 CrossRefGoogle Scholar
  48. Williams SDP, Penna NT (2011) Non-tidal ocean loading effects on geodetic GPS heights. Geophys Res Lett.  https://doi.org/10.1029/2011GL046940 CrossRefGoogle Scholar
  49. Zaitchik BF, Rodell M, Reichle RH, Zaitchik BF, Rodell M, Reichle RH (2008) Assimilation of GRACE terrestrial water storage data into a land surface model: results for the Mississippi River Basin.  https://doi.org/10.1175/2007JHM951.1 CrossRefGoogle Scholar
  50. Zhang L, Dobslaw H, Thomas M (2016) Globally gridded terrestrial water storage variations from GRACE satellite gravimetry for hydrometeorological applications. Geophys J Int 206(1):368–378.  https://doi.org/10.1093/gji/ggw153 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Geodesy and GeoinformationBonn UniversityBonnGermany
  2. 2.Department of EnvironmentGhent UniversityGhentBelgium
  3. 3.Environmental Computing GroupLeibniz Supercomputing CentreGarching bei MünchenGermany
  4. 4.Institute of Bio-Geosciences (IBG-3, Agrosphere)Forschungszentrum Jülich GmbHJülichGermany
  5. 5.Centre for High-Performance Scientific Computing Geoverbund ABC/JJülichGermany

Personalised recommendations