Advertisement

Journal of Geodesy

, Volume 93, Issue 10, pp 1931–1942 | Cite as

Geocenter motion time series derived from GRACE GPS and LAGEOS observations

  • Zhigui KangEmail author
  • Byron Tapley
  • Jianli Chen
  • John Ries
  • Srinivas Bettadpur
Original Article
  • 134 Downloads

Abstract

Accurate quantification of geocenter motion is important for maintaining the reference frame and estimating large-scale mass variations using the Gravity Recovery and Climate Experiment (GRACE) time-variable gravity solutions. Geocenter motion (equivalent to the variations in the degree-1 spherical harmonics of the gravity field) can be determined from different geodetic techniques and approaches, and the results generally show reasonable agreement, but significant differences still exist. To be more consistent with GRACE gravity solutions, here we present an improved approach to solve geocenter motion using GRACE GPS data. Over the past 15 years, GRACE satellites have acquired enough GPS data for studying the geocenter motion. In the meantime, data processing methods, reference system, and background geophysical models for GRACE precise orbit determination have also been significantly improved. Those aspects are very important for accurate determination of geocenter motion from GRACE GPS observations. For comparison, geocenter motion is also derived from LAGEOS satellite laser ranging (SLR) observations. With these independent geocenter motion solutions from GRACE GPS and LAGEOS SLR, we explore the reasons that lead to the differences between the solutions, and try to resolve these discrepancies. Daily geocenter motion time series from GRACE GPS data and 28-day geocenter variations from LAGEOS SLR observations for the time span 2003–2016 have been derived. Internal comparisons between the GRACE-A and GRACE-B geocenter motion time series and external comparisons between GRACE and LAGEOS show good agreements after using the improved approach. To verify the results, the annual geocenter motion from this study is compared with other recent geocenter motion solutions as well as predictions from geophysical models. The comparisons show reasonable agreements in both amplitude and phase with our improved approach.

Keywords

Geocenter GRACE GPS LAGEOS Precise orbit determination 

Notes

Acknowledgements

The authors would like to thank the International Global Navigation Satellite System (GNSS) Service (IGS) for providing the GPS ground station data and GPS satellite orbit products and the International Laser Range Service (ILRS) for the SLR data (https://ilrs.cddis.eosdis.nasa.gov/about/cite.html). This research was supported by NASA Contract NAS5-97213, NASA Grants NNX12AM86G, NNX17AG96G, NNX12AJ97G, and MEaSUREs-2018 (JPL Contract 1616713).

References

  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85(8):457–473CrossRefGoogle Scholar
  2. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the international reference frame modeling nonlinear station motions. J Geophys Res.  https://doi.org/10.1002/2016JB013098 CrossRefGoogle Scholar
  3. Beutler G, Rothacher M, Schaer S, Springer TA, Kouba J, Neilan RE (1999) The International GPS Service (IGS): an interdisciplinary service in support of earth sciences. Adv Space Res 23(4):631–635CrossRefGoogle Scholar
  4. Blewitt G, Lavalleé D, Clarke P, Nurutdinov K (2001) A new global mode of Earth deformation: seasonal cycle detected. Science 294(5550):2342–2345CrossRefGoogle Scholar
  5. Bouillé F, Cazenave A, Lemoine J, Crétaux J (2000) Geocentre motion from the DORIS space system and laser data on LAGEOS satellites: comparison with surface loading data. Geophys J Int 143(1):71–82CrossRefGoogle Scholar
  6. Case K, Kruizinga GLH, Wu SC (2010) GRACE level 1B data product user handbook, JPL D-22027. ftp://podaac.jpl.nasa.gov/allData/grace/docs/Handbook_1B_v1.3.pdf
  7. Chen J, Wilson C, Eanes R, Nerem RS (1999) Geophysical interpretation of observed geocenter variations. J Geophys Res 104(B2):2683–2690CrossRefGoogle Scholar
  8. Cheng MK, Ries JC, Tapley BD (2013) Geocenter motion from analysis of SLR data. In: International Association of Geodesy symposia, vol 138, pp 19–25Google Scholar
  9. Colliliéux X, Altamimi Z, Ray J, van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimation. J Geophys Res.  https://doi.org/10.1029/2008JB005727 CrossRefGoogle Scholar
  10. Dong D, Dickey JO, Chao Y, Cheng MK (1997) Geocenter variations caused by atmosphere, ocean and surface ground water. Geophys Res Lett 24(15):1867–1870CrossRefGoogle Scholar
  11. Dong D, Yunk TP, Heflin MB (2003) Origin of the International Terrestrial Reference Frame. J Geophs Res Solid Earth 108(B4):2200Google Scholar
  12. Dunn C, Bertiger W, Bar-Sever Y, Desai S, Haines B, Kuang D, Franklin G, Harris I, Kruizinga G, Meehan T, Nandi S, Nguyen D, Rogstad T, Thomas JB, Tien J, Romans L, Watkins M, Wu SC, Bettadpur S, Kim JR (2003) Instrument of GRACE: GPS augments gravity measurements. GPS World 14(2):16–28Google Scholar
  13. Kang Z, Schwintzer P, Reigber C, Zhu SY (1997) Precise orbit determination for GPS/MET using GPS-SST data. In: Proceedings of the 12th international symposium on space flight dynamics, ESOC, Darmstadt, GermanyGoogle Scholar
  14. Kang Z, Tapley B, Bettadpur S, Ries J, Nagel P, Pastor R (2006) Precise orbit determination for GRACE mission using only GPS data. J Geod 80(6):322–331CrossRefGoogle Scholar
  15. Kar S (1997) Long-period variations in the geocenter observed from laser tracking of multiple Earth satellites, CSR report CSR-97-2, Center for Space Research, The University of Texas at Austin, Austin, TX, USAGoogle Scholar
  16. König R, Dahle Ch, Vei M, Neumayer KH (2015) A geocenter time series from a combination of LAGEOS and GRACE observations. In: International Association of Geodesy symposia book series, IAG SYMPOSIA, vol 143, pp 169–174. https://doi.org/10.1007/1345_2015_24Google Scholar
  17. Maennel B, Rothacher M (2017) Geocenter variations derived from a combined processing of LEO- and ground-based GPS observations. J Geod 91:933–944CrossRefGoogle Scholar
  18. Melachroinos SA, Lemoine FG, Zelensky NP, Rowlands DD, Luthcke SB, Bordyugov O (2013) The effect of geocenter motion on Jason-2 orbits and the mean sea level. Adv Space Res 51:1323–1334.  https://doi.org/10.1016/j.asr.2012.06.004 CrossRefGoogle Scholar
  19. Moreaux G, Lemonine F, Capdeville H, Kuzin S, Otten M, Stepanek P, Willis P, Ferrage P (2016) The International DORIS Service contribution to the 2014 realization of the International Terrestrial Reference Frame. Adv Space Res 58(7):1047–1064Google Scholar
  20. Petit G, Luzum B (2010) IERS Conventions (2010), International Earth Rotation Service (IERS) Technical Note 36. Verlag des Bundesamts fur Kartographie und Geodasie, Frankfurt am MainGoogle Scholar
  21. Ries JC (2016) Reconciling estimates of annual geocenter motion from space geodesy. In: Proceedings of the 20th international workshop on laser ranging, 10–14 Oct 2016, Potsdam, Germany. https://cddis.nasa.gov/lw20/docs/2016/papers/14-Ries_paper.pdf
  22. Rim HJ (1992) TOPEX orbit determination using GPS tracking system, CSR report CSR-92-3, Center for Space Research, The University of Texas at Austin, Austin, TX, USAGoogle Scholar
  23. Sun Y, Riva R, Ditmar P (2016) Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models. J Geophys Res 121:8352–8370CrossRefGoogle Scholar
  24. Swenson S, Chambers D, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res.  https://doi.org/10.1029/2007jb005338 CrossRefGoogle Scholar
  25. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett.  https://doi.org/10.1029/2004gl019920 CrossRefGoogle Scholar
  26. Wu X, Colliliéux X, Altamimi Z (2010) Data sets and inverse strategies for global surface mass variations. Geophys Res Abstr 12:EGU2010Google Scholar
  27. Wu X, Ray J, van Dam T (2012) Geocenter motion and its geodetic and geophysical implications. J Geodyn 58:44–61CrossRefGoogle Scholar
  28. Wu X, Abbondanza C, Altamimi Z, Chin TM, Colliliéux X, Gross RS, Heflin MB, Jian Y, Parker JW (2015) KALREF—a Kalman filter and time series approach to the International Terrestrial Reference Frame realization. J Geophys Res.  https://doi.org/10.1002/2016jb011622 CrossRefGoogle Scholar
  29. Wu X, Kusche J, Landerer FW (2017) A new unified approach to determine geocenter motion using space geodetic and GRACE gravity data. Geophys J Int 209:1398–1402CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Space ResearchThe University of Texas at AustinAustinUSA

Personalised recommendations