Advertisement

Attitude determination of Galileo satellites using high-resolution kHz SLR

  • Michael A. SteindorferEmail author
  • Georg Kirchner
  • Franz Koidl
  • Peiyuan Wang
  • Harald Wirnsberger
  • Erik Schoenemann
  • Francisco Gonzalez
Original Article
  • 70 Downloads

Abstract

A Galileo retroreflector panel was mounted on a tripod 32 km outside of the satellite laser ranging station Graz. The panel was tilted to achieve laser beam incident angles between \(0^{\circ }\) and approx. \(18^{\circ }\) while simultaneously doing distance measurements. At incident angles larger than approx. \(8^{\circ }\) it was possible to identify fine structures within the data corresponding to the different columns of retroreflectors within the panel. The range differences between these columns were determined via a histogram analysis. Knowing the panel geometry it was possible to recalculate the laser beam incident angle on the panel. To compare these ground-based measurements to measurements to a specific pass of Galileo 103, matching incident angle conditions were chosen. Similar structures were found within the data set and it was possible to verify the incident angle of the laser beam. Such a method provides an excellent way to validate the attitude of Galileo satellites and is possible by analyzing the fine details of mm-accuracy kHz SLR data only.

Keywords

Satellite laser ranging Galileo Attitude determination 

Notes

Author Contributions

M.S., G.K., F.K., E.S., and F.G. designed the research; M.S., G.K, F.K. performed the research; M.S., G.K. F.K., P.W., and H.W. analyzed the data; and M.S. wrote the paper.

Funding

Funding was provided by European Space Agency (Grant No. 15/P28).

References

  1. Bonin JA, Chambers DP, Cheng M (2018) Using satellite laser ranging to measure ice mass change in Greenland and Antarctica. Cryosphere 12(1):71–79.  https://doi.org/10.5194/tc-12-71-2018 CrossRefGoogle Scholar
  2. Collilieux X, Altamimi Z, Ray J, Van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimation. J Geophys Res 114(4):1–17.  https://doi.org/10.1029/2008JB005727 Google Scholar
  3. Degnan JJ (1993) Millimeter accuracy satellite laser ranging: a review. Geodynamics 25:133–162.  https://doi.org/10.1029/GD025 CrossRefGoogle Scholar
  4. ESA/ESOC: Galileo FOC (2018). https://ilrs.cddis.eosdis.nasa.gov/missions
  5. ESA/ESOC: Galileo IOV (2018). https://ilrs.cddis.eosdis.nasa.gov/missions
  6. Kucharski D, Kirchner G, Bennett JC, Lachut M, Sośnica K, Koshkin N, Shakun L, Koidl F, Steindorfer M, Wang P, Fan C, Han X, Grunwaldt L, Wilkinson M, Rodríguez J, Bianco G, Vespe F, Catalán M, Salmins K, del Pino JR, Lim HC, Park E, Moore C, Lejba P, Suchodolski T (2017) Photon pressure force on space debris TOPEX/Poseidon measured by satellite laser ranging. Earth Space Sci 4(10):661–668.  https://doi.org/10.1002/2017EA000329 CrossRefGoogle Scholar
  7. Kucharski D, Kirchner G, Koidl F, Fan C, Carman R, Moore C, Dmytrotsa A, Ploner M, Bianco G, Medvedskij M, Makeyev A, Appleby G, Suzuki M, Torre JM, Zhongping Z, Grunwaldt L, Feng Q (2014) Attitude and spin period of space debris envisat measured by satellite laser ranging. IEEE Trans Geosci Remote Sens 52(12):7651–7657.  https://doi.org/10.1109/TGRS.2014.2316138 CrossRefGoogle Scholar
  8. Kucharski D, Kirchner G, Otsubo T, Koidl F (2009) 22 Years of AJISAI spin period determination from standard SLR and kHz SLR data. Adv Space Res 44(5):621–626.  https://doi.org/10.1016/j.asr.2009.05.007 CrossRefGoogle Scholar
  9. Liao SK, Cai WQ, Handsteiner J, Liu B, Yin J, Zhang L, Rauch D, Fink M, Ren JG, Liu WY, Li Y, Shen Q, Cao Y, Li FZ, Wang JF, Huang YM, Deng L, Xi T, Ma L, Hu T, Li L, Liu NL, Koidl F, Wang P, Chen YA, Wang XB, Steindorfer M, Kirchner G, Lu CY, Shu R, Ursin R, Scheidl T, Peng CZ, Wang JY, Zeilinger A, Pan JW (2018) Satellite-relayed intercontinental quantum network. Phys Rev Lett 120(3):30501.  https://doi.org/10.1103/PhysRevLett.120.030501 CrossRefGoogle Scholar
  10. Matsuo K, Otsubo T (2013) Temporal variations in the Earth’s gravity field from multiple SLR satellites: toward the investigation of polar ice sheet mass balance. In: 18th international workshop on laser ranging.  https://doi.org/10.13140/2.1.4490.9128
  11. Murphy TW, Goodrow SD (2013) Polarization and far-field diffraction patterns of total internal reflection corner cubes. Appl Opt 52(2):117–126.  https://doi.org/10.1364/AO.52.000117 CrossRefGoogle Scholar
  12. Pearlman M, Degnan J, Bosworth J (2002) The international laser ranging service. Adv Space Res 30(2):135–143.  https://doi.org/10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  13. Procházka I, Blažej J, Kodet J (2011) Solid state photon counters and their applications in space related projects. In: Proceedings of SPIE, vol 8195.  https://doi.org/10.1117/12.901070
  14. Schwarzenberg-Czerny A (1997) The correct probability distribution for the phase dispersion minimization periodogram. Astrophys J 489:941.  https://doi.org/10.1086/304832 CrossRefGoogle Scholar
  15. Seeber G (2003) Satellite geodesy. Walter de Gruyter GmbH und Co. KG, Berlin.  https://doi.org/10.1515/9783110200089 CrossRefGoogle Scholar
  16. Steindorfer MA, Kirchner G, Koidl F, Wang P, Antón A, Fernández Sánchez J, Merz K (2017) Stare and chase of space debris targets using real-time derived pointing data. Adv Space Res 60(6):1201–1209.  https://doi.org/10.1016/j.asr.2017.06.026 CrossRefGoogle Scholar
  17. Stellingwerf RF (1978) Period determination using phase dispersion minimization. Astrophys J 224:953.  https://doi.org/10.1086/156444 CrossRefGoogle Scholar
  18. Ye X (2010) Sciences of geodesy-I. Springer, Berlin.  https://doi.org/10.1007/978-3-642-11741-1 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Space Research InstituteAustrian Academy of SciencesGrazAustria
  2. 2.ESA/ESOCDarmstadtGermany
  3. 3.ESA/ESTECNoordwijkThe Netherlands

Personalised recommendations