Advertisement

Future SLR station networks in the framework of simulated multi-technique terrestrial reference frames

  • Susanne GlaserEmail author
  • Rolf König
  • Karl Hans Neumayer
  • Kyriakos Balidakis
  • Harald Schuh
Original Article
  • 86 Downloads

Abstract

Currently, the requirements of the Global Geodetic Observing System are not yet met by the latest global terrestrial reference frames (TRF). In this study, we assess potential TRF improvements by future SLR network designs partly already classified as “future stations” by the International Laser Ranging Service. We simulate the space geodetic techniques GPS, SLR, and VLBI within the time span 2008–2014 and evaluate the feasible improvements of the SLR-only and the multi-technique TRFs w.r.t. the current station networks. The station performance of the simulated 14 additional SLR stations is driven by the total cloud coverage from the numerical weather model ERA5. We find that the estimated station positions and velocities as well as the Earth rotation parameters, and the TRF-defining parameters origin and scale improve by 1–4% if a single additional station is added to the current SLR-only network. The solution with all 14 additional stations improves by about 22% in origin and 20% in scale w.r.t. the current SLR-only TRF. Single existing stations were excluded from the network resulting in deteriorations of 2–6%. Multi-technique TRFs improve by new co-located sites due to additional SLR stations by up to 1% for station positions, velocities, and the realization of the orientation.

Keywords

GGOS ITRF SLR Simulation 

Notes

Acknowledgements

This work has been supported by the German Research Foundation (DFG) under Grant No. SCHU 1103/8-1 (GGOS-SIM, Simulation of the Global Geodetic Observing System) and by the Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V. under Grant No. ZT-0007 (ADVANTAGE, Advanced Technologies for Navigation and Geodesy). The IGS (Dow et al. 2009), the IVS (Schuh and Behrend 2012; Nothnagel et al. 2015), and the ILRS (Pearlman et al. 2002) are acknowledged for providing data used within this study, and ECMWF for making publicly available model level data from ERA5 reanalysis. The authors would like to thank Sven Bauer for the fruitful discussions and three anonymous reviewers for their valuable comments on the manuscript.

References

  1. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth.  https://doi.org/10.1002/2016JB013098 Google Scholar
  2. Aoyama Y, Doi K, Fukuda Y, Ikeda H, Hayakawa H, Fukuzaki Y, Sekido M, Otsubo T, Nogi Y, Shibuya K (2017) Geodetic activities at Syowa Station, East Antarctica. In: Abstract G07-1-04 presented at IAG-IASPEI 2017 Joint Scientific Assembly, Kobe, Japan, July 30–August 4. https://confit.atlas.jp/guide/event/iagiaspei2017/subject/G07-4-02/advanced. Accessed 1 Apr 2019
  3. Appleby GM, Bianco G, Noll CE, Pavlis EC, Pearlman MR (2016) Current trends and challenges in satellite laser ranging. In: Behrend D, Baver KD, Armstrong KL (eds) International VLBI Service for geodesy and astrometry 2016 general meeting proceedings: “New Horizons with VGOS”. NASA/CP-2016-219016, pp 15–24Google Scholar
  4. Beckley BD, Callahan PS, Hancock DW, Mitchum GT, Ray RD (2017) On the “Cal-Mode” correction to TOPEX satellite altimetry and its effect on the global mean sea level time series. J Geophys Res Oceans 122(11):8371–8384.  https://doi.org/10.1002/2017JC013090 Google Scholar
  5. Blewitt G, Altamimi Z, Davis J, Gross R, Kuo C, Lemoine FG, Moore AW, Neilan RE, Plag H, Rothacher M, Shum CK, Sideris MG, Schöne T, Tregoning P, Zerbini S (2010) Geodetic observations and global reference frame contributions to understanding sea level rise and variability. Wiley-Blackwell, chap 9, pp 256–284.  https://doi.org/10.1002/9781444323276.ch9. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781444323276.ch9
  6. Bloßfeld M (2015) The key role of Satellite Laser Ranging towards the integrated estimation of geometry, rotation and gravitational field of the Earth. Phd thesis, Technische Universität München. https://mediatum.ub.tum.de/node?id=1231180
  7. Boucher C, Pearlman M, Sarti P (2015) Global geodetic observatories. Adv Space Res 55(1):24–39.  https://doi.org/10.1016/j.asr.2014.10.011 Google Scholar
  8. Bury G, Sośnica K, Zajdel R (2018) Multi-GNSS orbit determination using satellite laser ranging. J Geod.  https://doi.org/10.1007/s00190-018-1143-1 Google Scholar
  9. Collilieux X, Altamimi Z (2009) Impact of the network effect on the origin and scale: case study of satellite laser ranging. In: Sideris MG (ed) Observing our changing earth. Springer, Berlin, pp 31–37.  https://doi.org/10.1007/978-3-540-85426-5_4 Google Scholar
  10. Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimation. J Geophys Res Solid Earth.  https://doi.org/10.1029/2008JB005727 Google Scholar
  11. Dow J, Neilan R, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3):191–198.  https://doi.org/10.1007/s00190-008-0300-3 Google Scholar
  12. Drewes H, Angermann D, Seitz M (2013) Alternative definitions of the terrestrial reference system and its realization in reference frames. In: Altamimi Z, Collilieux X (eds) Reference frames for applications in geosciences. Springer, Heidelberg, pp 39–44Google Scholar
  13. Glaser S, Ampatzidis D, König R, Nilsson T, Heinkelmann R, Flechtner F, Schuh H (2016) Simulation of VLBI observations to determine a global TRF for GGOS. Springer, Cham, pp 3–9.  https://doi.org/10.1007/1345_2016_256 Google Scholar
  14. Glaser S, König R, Ampatzidis D, Nilsson T, Heinkelmann R, Flechtner F, Schuh H (2017) A global terrestrial reference frame from simulated VLBI and SLR data in view of GGOS. J Geod 91(7):723–733.  https://doi.org/10.1007/s00190-017-1021-2 Google Scholar
  15. Glaser S, König R, Neumayer KH, Nilsson T, Heinkelmann R, Flechtner F, Schuh H (2018) On the impact of local ties on the datum realization of global terrestrial reference frames. J Geod.  https://doi.org/10.1007/s00190-018-1189-0 Google Scholar
  16. Gross R, Beutler G, Plag HP (2009) Integrated scientific and societal user requirements and functional specifications for the GGOS. In: Global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin, pp 209–224.  https://doi.org/10.1007/978-3-642-02687-4_7
  17. Kehm A, Bloßfeld M, Pavlis EC, Seitz F (2017) Future global SLR network evolution and its impact on the terrestrial reference frame. J Geod.  https://doi.org/10.1007/s00190-017-1083-1 Google Scholar
  18. König R, Reigber C, Zhu S (2005) Dynamic model orbits and Earth system parameters from combined GPS and LEO data. Adv Space Res 36(3):431–437.  https://doi.org/10.1016/j.asr.2005.03.064 Google Scholar
  19. König R, König D, Neumayer K (2009) Station coordinates and low degree harmonics with daily resolution from a GPS/CHAMP integrated solution and with weekly resolution from a LAGEOS-only solution. Springer, Berlin, pp 31–38.  https://doi.org/10.1007/978-3-642-00860-3_5 Google Scholar
  20. Luceri V, Pavlis E (2016) The ILRS contribution to ITRF2014. International Laser Ranging Service. http://itrf.ign.fr/ITRF_solutions/2014/doc/ILRS-ITRF2014-description.pdf
  21. MacMillan DS (2017) EOP and scale from continuous VLBI observing: CONT campaigns to future VGOS networks. J Geod 91(7):819–829.  https://doi.org/10.1007/s00190-017-1003-4 Google Scholar
  22. Männel B, Thaller D, Rothacher M, Böhm J, Müller J, Glaser S, Dach R, Biancale R, Bloßfeld M, Kehm A, Herrera Pinzón I, Hofmann F, Andritsch F, Coulot D, Pollet A (2018) Recent activities of the GGOS standing committee on performance simulations and architectural trade-offs (PLATO). Springer, Berlin, pp 1–4.  https://doi.org/10.1007/1345_2018_30 Google Scholar
  23. Meindl M, Beutler G, Thaller D, Dach R, Jäggi A (2013) Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv Space Res 51(7):1047–1064.  https://doi.org/10.1016/j.asr.2012.10.026 Google Scholar
  24. Merkowitz SM, Bolotin S, Elosegui P, Esper J, Gipson J, Hilliard L, Himwich E, Hoffman ED, Lakins DD, Lamb RC, Lemoine FG, Long JL, McGarry JF, MacMillan DS, Michael BP, Noll C, Pavlis EC, Pearlman MR, Ruszczyk C, Shappirio MD, Stowers DA (2018) Modernizing and expanding the NASA space geodesy network to meet future geodetic requirements. J Geod.  https://doi.org/10.1007/s00190-018-1204-5 Google Scholar
  25. Niemeier W (2008) Ausgleichungsrechnung: statistische Auswertemethoden. Walter de Gruyter, BerlinGoogle Scholar
  26. Noll CE, Ricklefs R, Horvath J, Mueller H, Schwatke C, Torrence M (2018) Information resources supporting scientific research for the international laser ranging service. J Geod.  https://doi.org/10.1007/s00190-018-1207-2 Google Scholar
  27. Nothnagel A (2015) The IVS data input to ITRF2014. International VLBI Service for Geodesy and Astrometry, GFZ Data Services.  https://doi.org/10.5880/GFZ.1.1.2015.002
  28. Otsubo T, Matsuo K, Aoyama Y, Yamamoto K, Hobiger T, Kubo-oka T, Sekido M (2016) Effective expansion of satellite laser ranging network to improve global geodetic parameters. Earth Planets Space 68(1):1–7.  https://doi.org/10.1186/s40623-016-0447-8 Google Scholar
  29. Pavlis EC, Kuzmicz-Cieslak M (2009) SLR and the next generation global geodetic networks. In: Schilliak S (ed) Proceedings of the 16th international workshop on laser ranging. https://cddis.nasa.gov/lw16/docs/papers/ggo_5_Pavlis_p.pdf
  30. Pavlis EC, Koenig D, Kuzmicz-Cieslak M, MacMillan DS (2016) GGOS2020 space geodesy network: variations in system deployment scenarios. AGU Fall Meeting Abstracts G41B-1014Google Scholar
  31. Pearlman M, Degnan J, Bosworth J (2002) The International Laser Ranging Service. Adv Space Res 30(2):135–143.  https://doi.org/10.1016/S0273-1177(02)00277-6
  32. Petit G, Luzum B (eds) (2010) IERS Conventions (2010), IERS Technical Note, vol 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, GermanyGoogle Scholar
  33. Rebischung P, Altamimi Z, Springer T (2014) A collinearity diagnosis of the GNSS geocenter determination. J Geod 88(1):65–85.  https://doi.org/10.1007/s00190-013-0669-5 Google Scholar
  34. Rodriguez-Solano C, Hugentobler U, Steigenberger P, Bloßfeld M, Fritsche M (2014) Reducing the draconitic errors in GNSS geodetic products, pp 1–16.  https://doi.org/10.1007/s00190-014-0704-1
  35. Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80.  https://doi.org/10.1016/j.jog.2012.07.007 Google Scholar
  36. Schuh H, König R, Ampatzidis D, Glaser S, Flechtner F, Heinkelmann R, Nilsson TJ (2015) GGOS-SIM: simulation of the reference frame for the Global Geodetic Observing System. Springer, Cham, pp 95–100.  https://doi.org/10.1007/1345_2015_217
  37. Sillard P, Boucher C (2001) A review of algebraic constraints in terrestrial reference frame datum definition. J Geod 75(2–3):63–73.  https://doi.org/10.1007/s001900100166 Google Scholar
  38. Sośnica K, Thaller D, Dach R, Steigenberger P, Beutler G, Arnold D, Jäggi A (2015) Satellite laser ranging to GPS and GLONASS. J Geod 89(7):725–743.  https://doi.org/10.1007/s00190-015-0810-8 Google Scholar
  39. Sośnica K, Bury G, Zajdel R (2018) Contribution of multi GNSS constellation to SLR derived terrestrial reference frame. Geophys Res Lett 45(5):2339–2348Google Scholar
  40. Thaller D, Krügel M, Rothacher M, Tesmer V, Schmid R, Angermann D (2007) Combined Earth orientation parameters based on homogeneous and continuous VLBI and GPS data. J Geod 81(6–8):529–541.  https://doi.org/10.1007/s00190-006-0115-z Google Scholar
  41. Thaller D, Dach R, Seitz M, Beutler G, Mareyen M, Richter B (2011) Combination of GNSS and SLR observations using satellite co-locations. J Geod 85(5):257–272.  https://doi.org/10.1007/s00190-010-0433-z Google Scholar
  42. Urschl C, Beutler G, Gurtner W, Hugentobler U, Schaer S (2007) Contribution of SLR tracking data to GNSS orbit determination. Adv Space Res 39(10):1515–1523.  https://doi.org/10.1016/j.asr.2007.01.038 Google Scholar
  43. Zannat UJ, Tregoning P (2017) Estimating network effect in geocenter motion: applications. J Geophys Res Solid Earth 122(10):8347–8359.  https://doi.org/10.1002/2017JB014247 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.GFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.GFZ German Research Centre for GeosciencesOberpfaffenhofenGermany
  3. 3.Institute of Geodesy and Geoinformation ScienceTechnische Universität BerlinBerlinGermany

Personalised recommendations