Advertisement

Galileo and QZSS precise orbit and clock determination using new satellite metadata

  • Xingxing LiEmail author
  • Yongqiang Yuan
  • Jiande Huang
  • Yiting Zhu
  • Jiaqi Wu
  • Yun Xiong
  • Xin Li
  • Keke Zhang
Original Article
  • 97 Downloads

Abstract

During 2016–2018, satellite metadata/information including antenna parameters, attitude laws and physical characteristics such as mass, dimensions and optical properties were released for Galileo and QZSS (except for the QZS-1 optical coefficients). These metadata are critical for improving the accuracy of precise orbit and clock determination. In this contribution, we evaluate the benefits of these new metadata to orbit and clock in three aspects: the phase center offsets and variations (PCO and PCV), the yaw-attitude model and solar radiation pressure (SRP) model. The updating of Galileo PCO and PCV corrections, from the values estimated by Deutsches Zentrum für Luft- und Raumfahrt and Deutsches GeoForschungsZentrum to the chamber calibrations disclosed by new metadata, has only a slight influence on Galileo orbits, with overlap differences within only 1 mm. By modeling the yaw attitude of Galileo satellites and QZS-2 spacecraft (SVN J002) according to new published attitude laws, the residuals of ionosphere-free carrier-phase combinations can be obviously decreased in yaw maneuver seasons. With the new attitude models, the 3D overlap RMS in eclipse seasons can be decreased from 12.3 cm, 14.7 cm, 16.8 cm and 34.7 cm to 11.7 cm, 13.4 cm, 15.8 cm and 32.9 cm for Galileo In-Orbit Validation (IOV), Full Operational Capability (FOC), FOC in elliptical orbits (FOCe) and QZS-2 satellites, respectively. By applying the a priori box-wing SRP model with new satellite dimensions and optical coefficients, the 3D overlap RMS are 5.3 cm, 6.2 cm, 5.3 cm and 16.6 cm for Galileo IOV, FOCe, FOC and QZS-2 satellites, with improvements of 11.0%, 14.7%, 14.0% and 13.8% when compared with the updated Extended CODE Orbit Model (ECOM2). The satellite laser ranging (SLR) validation reveals that the a priori box-wing model has smaller mean biases of − 0.4 cm, − 0.4 cm and 0.6 cm for Galileo FOCe, FOC and QZS-2 satellites, while a slightly larger mean bias of − 1.0 cm is observed for Galileo IOV satellites. Moreover, the SLR residual dependencies of Galileo IOV and FOC satellites on the elongation angle almost vanish when the a priori box-wing SRP model is applied. As for satellite clocks, a visible bump appears in the Modified Allan deviation at integration time of 20,000 s for Galileo Passive Hydrogen Maser with ECOM2, while it almost vanishes when the a priori box-wing SRP model and new metadata are applied. The standard deviations of clock overlap can also be significantly reduced by using new metadata.

Keywords

Precise orbit determination Galileo Quasi-Zenith Satellite System (QZSS) Phase center offsets and variations Yaw attitude Solar radiation pressure (SRP) 

Notes

Acknowledgements

We are very grateful to the International GNSS Service (IGS) and the International Laser Ranging Service (ILRS) for providing GNSS and SLR observation data. This study is financially supported by the National Natural Science Foundation of China (Grant No. 41774030), the Hubei Province Natural Science Foundation of China (Grant No. 2018CFA081) and the National Youth Thousand Talents Program.

References

  1. Altamimi Z, Rebischung P, Métivier L et al (2016) ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth 121(8):6109–6131.  https://doi.org/10.1002/2016JB013098 CrossRefGoogle Scholar
  2. Arnold D, Meindl M, Beutler G et al (2015) CODE’s new solar radiation pressure model for GNSS orbit determination. J Geod 89(8):775–791.  https://doi.org/10.1007/s00190-015-0814-4 CrossRefGoogle Scholar
  3. Bar-Sever Y (1994) New GPS attitude model. In: IGSMAIL-0591. IGS Central Bureau, PasadenaGoogle Scholar
  4. Bar-Sever Y, Kuang D (2004) New empirically derived solar radiation pressure model for global positioning system satellites. IPN progress report pp 42–159, Nov 15, 2004Google Scholar
  5. Becker M, Zeimetz P, Schönemann E (2010) Anechoic chamber calibrations of phase center variations for new and existing GNSS signals and potential impacts in IGS processing. In: IGS workshop 2010, NewcastleGoogle Scholar
  6. Beutler G, Brockmann E, Gurtner W et al (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics(IGS): theory and initial results. Manuscr Geod 19(6):367–386Google Scholar
  7. Boehm J, Niell A, Tregoning P et al (2006) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett.  https://doi.org/10.1029/2005gl025546 Google Scholar
  8. Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10):679–683.  https://doi.org/10.1007/s00190-007-0135-3 CrossRefGoogle Scholar
  9. Dach R, Schaer S, Arnold D et al (2016) CODE analysis center technical report 2015. In: Jean Y, Dach R (eds) International GNSS service: technical report 2015, (AIUB), IGS Central Bureau and University of Bern, Bern Open Publishing, pp 25–44, June 2016.  https://doi.org/10.7892/boris.80307
  10. de Selding PB (2014) ESA proceeding with Galileo launches despite in-orbit satellite issues. SpaceNews. http://spacenews.com/41616esa-proceeding-with-galileo-launches-despite-in-orbitsatellite-issues. Accessed 10 May 2016
  11. Dell’Agnello SD et al (2010) Creation of the new industry-standard space test of laser retroreflectors for the GNSS and LAGEOS. Adv Space Res 47(5):822–842.  https://doi.org/10.1016/j.asr.2010.10.022 CrossRefGoogle Scholar
  12. Dilssner F (2010) GPS IIF-1 satellite, antenna phase center and attitude modeling. Inside GNSS 5(6):59–64Google Scholar
  13. Dilssner F, Springer T, Gienger G et al (2011) The GLONASS-M satellite yaw-attitude model. Adv Space Res 47(1):160–171.  https://doi.org/10.1016/j.asr.2010.09.007 CrossRefGoogle Scholar
  14. Dow JM, Neilan R, Rizos C (2009) The International GNSS Service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198.  https://doi.org/10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  15. European GNSS Service Centre (EGSC) (2017) Galileo satellite metadata. https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata. Accessed 10 Jan 2018
  16. Fliegel HF, Gallini TE, Swift ER (1992) Global positioning system radiation force model for geodetic applications. J Geophys Res 97(B1):559–568.  https://doi.org/10.1029/91JB02564 CrossRefGoogle Scholar
  17. Folkner WM, Williams JG, Boggs DH (2009) The planetary and lunar ephemeris DE 421. Technical report IPN progress report, pp 42–178. Jet Propulsion LaboratoryGoogle Scholar
  18. Guo J, Chen G, Zhao Q et al (2016) Comparison of solar radiation pressure models for BDS IGSO and MEO satellites with emphasis on improving orbit quality. GPS Solut 21(2):511–522.  https://doi.org/10.1007/s10291-016-0540-2 CrossRefGoogle Scholar
  19. Hauschild A, Steigenberger P, Rodriguez-Solano C (2012) Signal, orbit and attitude analysis of Japan’s first QZSS satellite Michibiki. GPS Solut 16:127–133.  https://doi.org/10.1007/s10291-011-0245-5 CrossRefGoogle Scholar
  20. Ikari S, Ebinuma T, Funase R et al (2013) An evaluation of solar radiation pressure models for QZS-1 precise orbit determination. In: Proceedings of ION GNSS. ION, Nashville, pp 1234–1241Google Scholar
  21. Ishijima Y, Inaba N, Matsumoto A et al (2009) Design and development of the first Quasi-Zenith Satellite attitude and orbit control system. In: 2009 IEEE aerospace conference. IEEE, pp 1–8.  https://doi.org/10.1109/aero.2009.4839537
  22. Kogure S (2012) QZSS antenna coordinates; eMail to Montenbruck O, 2012/07/20Google Scholar
  23. Kouba J (2008) A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solut 13(1):1–12.  https://doi.org/10.1007/s10291-008-0092-1 CrossRefGoogle Scholar
  24. Kouba J (2013) Noon turns for deep eclipsing Block IIF GPS satellites, a note prepared for IGS ACs, dated 19 Dec 2013 [IGS-ACS-930 Mail]Google Scholar
  25. Liu J, Ge M (2003) PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ J Nat Sci 8(2B):603–609.  https://doi.org/10.1007/BF02899825 Google Scholar
  26. Lyard F, Lefevre F, Letellier T et al (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415.  https://doi.org/10.1007/s10236-006-0086-x CrossRefGoogle Scholar
  27. Meindl M, Beutler G, Thaller D et al (2013) Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv Space Res 51(7):1047–1064.  https://doi.org/10.1016/j.asr.2012.10.026 CrossRefGoogle Scholar
  28. Mendes VB, Pavlis EC (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Lett.  https://doi.org/10.1029/2004gl020308 Google Scholar
  29. Montenbruck O, on behalf of the IGS Multi-GNSS Working Group (2017) IGS white paper on satellite and operations information for generation of precise GNSS orbit and clock products. Version 2017/10/21Google Scholar
  30. Montenbruck O, Steigenberger P, Khachikyan R et al (2014) IGS-MGEX: preparing the ground for multi-constellation GNSS science. Inside GNSS 9(1):42–49Google Scholar
  31. Montenbruck O, Schmid R, Mercier F et al (2015a) GNSS satellite geometry and attitude models. Adv Space Res 56:1015–1029.  https://doi.org/10.1016/j.asr.2015.06.019 CrossRefGoogle Scholar
  32. Montenbruck O, Steigenberger P, Hugentobler U (2015b) Enhanced solar radiation pressure modeling for Galileo satellites. J Geod 89(3):283–297.  https://doi.org/10.1007/s00190-014-0774-0 CrossRefGoogle Scholar
  33. Montenbruck O, Steigenberger P, Prange L et al (2017) The multi-GNSS experiment (MGEX) of the international GNSS service (IGS): achievements, prospects and challenges. Adv Space Res 59(7):1671–1697.  https://doi.org/10.1016/j.asr.2017.01.011 CrossRefGoogle Scholar
  34. Pavlis NK, Holmes SA, Kenyon SC et al (2012) The development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res Solid Earth 117:B04406.  https://doi.org/10.1029/2011JB008916 CrossRefGoogle Scholar
  35. Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143.  https://doi.org/10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  36. Petit G, Luzum B (2010) IERS conventions 2010. No. 36 in IERS technical note, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, GermanyGoogle Scholar
  37. Prange L, Dach R, Lutz S et al (2016) The CODE MGEX orbit and clock solution. In: Rizos C, Willis P (eds), IAG 150 years, international association of geodesy symposia, vol 143. Springer, pp 767–773.  https://doi.org/10.1007/1345_2015_161
  38. Prange L, Orliac E, Dach R et al (2017) CODE’s five-system orbit and clock solution: the challenges of multi-GNSS data analysis. J Geod 91(4):345–360.  https://doi.org/10.1007/s00190-016-0968-8 CrossRefGoogle Scholar
  39. Rodríguez-Solano C, Hugentobler U, Steigenberger P et al (2014) Reducing the draconitic errors in GNSS geodetic products. J Geod 88(6):559–574.  https://doi.org/10.1007/s00190-014-0704-1 CrossRefGoogle Scholar
  40. Saastamoinen J (1973) Contributions to the theory of atmospheric refraction. Bull Géod 107(1):13–34.  https://doi.org/10.1007/BF02522083 CrossRefGoogle Scholar
  41. Schmid R, Rothacher M, Thaller D et al (2005) Absolute phase center corrections of satellite and receiver antennas: impact on global GPS solutions and estimation of azimuthal phase center variations of the satellite antenna. GPS Solut 9(4):283–293.  https://doi.org/10.1007/s10291-005-0134-x CrossRefGoogle Scholar
  42. Schmid R, Steigenberger P, Gendt G et al (2007) Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798.  https://doi.org/10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  43. Schmid R, Dach R, Collilieux X et al (2015) Absolute IGS antenna phase center model igs08.atx: status and potential improvements. J Geod 90(4):343–364.  https://doi.org/10.1007/s00190-015-0876-3 CrossRefGoogle Scholar
  44. Sośnica K, Prange L, Kaźmierski K et al (2017) Validation of Galileo orbits using SLR with a focus on satellites launched into incorrect orbital planes. J Geod 92(12):131–148.  https://doi.org/10.1007/s00190-017-1050-x Google Scholar
  45. Springer TA, Beutler G, Rothacher M (1999) A new solar radiation pressure model for GPS satellites. GPS Solut 3(2):50–62.  https://doi.org/10.1007/PL00012757 CrossRefGoogle Scholar
  46. Steigenberger P, Montenbruck O (2016) Galileo status: orbits, clocks, and positioning. GPS Solut 21(2):319–331.  https://doi.org/10.1007/s10291-016-0566-5 CrossRefGoogle Scholar
  47. Steigenberger P, Dach R, Prange L et al (2015) Galileo satellite antenna modeling. In: Geophys research abstract, vol 17, EGU2015-10772-1Google Scholar
  48. Steigenberger P, Fritsche M, Dach R et al (2016) Estimation of satellite antenna phase center offsets for Galileo. J Geod 90(8):773–785.  https://doi.org/10.1007/s00190-016-0909-6 CrossRefGoogle Scholar
  49. Steigenberger P, Thoelert S, Montenbruck O et al (2017) GNSS satellite transmit power and its impact on orbit determination. J Geod 92(6):609–624.  https://doi.org/10.1007/s00190-017-1082-2 CrossRefGoogle Scholar
  50. The Cabinet Office Government of Japan (2017) QZS-1 satellite information (SPI-QZS1) http://qzss.go.jp/en/technical/qzssinfo/khp0mf0000000wuf-att/spi_qzs1.pdf?t=1528617014169. Accessed 31 May 2018
  51. Wu J, Wu S, Hajj G et al (1993) Effects on antenna orientation on GPS carrier phase. Manuscr Geod 18(2):91–98Google Scholar
  52. Zhao Q, Chen G, Guo J et al (2017) An a priori solar radiation pressure model for the QZSS Michibiki satellite. J Geod 92(8):1–13.  https://doi.org/10.1007/s00190-017-1048-4 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xingxing Li
    • 1
    • 2
    Email author
  • Yongqiang Yuan
    • 1
  • Jiande Huang
    • 1
  • Yiting Zhu
    • 1
  • Jiaqi Wu
    • 1
  • Yun Xiong
    • 1
  • Xin Li
    • 1
  • Keke Zhang
    • 1
  1. 1.School of Geodesy and GeomaticsWuhan UniversityWuhanChina
  2. 2.German Research Centre for Geosciences (GFZ)PotsdamGermany

Personalised recommendations