Advertisement

Journal of Geodesy

, Volume 93, Issue 6, pp 911–925 | Cite as

M-estimation using unbiased median variance estimate

  • Ling Yang
  • Yunzhong ShenEmail author
  • Bofeng Li
Original Article
  • 434 Downloads

Abstract

This paper first proves that the traditional median variance estimate is biased when the sample number is small and then proposes an unbiased median variance estimate to calibrate for the bias of the variance estimate. The scaled median variance estimate is firstly derived, and the unbiased median variance estimate is formed with independent residuals in an adjustment model no matter whether the measurements are contaminated by outliers or not. Using the unbiased median variance estimate, the M-estimate is constructed to mitigate for the biases caused by the variance estimate. The IGGIII reduction factor is used to verify the proposed algorithms by a levelling network example. Numerical analysis confirms that the proposed median variance estimate can achieve better unbiasedness for contaminated measurement set, but the dispersion of our estimate is unfortunately larger than that for the least-squares estimate.

Keywords

M-estimation Unbiased median variance estimate Finite sample size IGGIII 

Notes

Acknowledgements

The authors are grateful to Prof. Chris Rizos for his very helpful revision on the draft of this paper. This work is sponsored by the National Key R&D Program of China (2017YFA0603103) and National Natural Science Foundation of China (41731069, 41504022).

References

  1. Baarda W (1967) Statistical concepts in geodesy. Netherlands Geodetic, Commission, Publications on Geodesy, New Series 2, No. 4, Delft. ISBN-13: 9789061322085, ISBN-10: 9061322081Google Scholar
  2. Baarda W (1968) A testing procedure for use in geodetic networks. Netherland Geodetic Commission, vol 2, no 5. ISBN-13: 9789061322092, ISBN-10: 906132209XGoogle Scholar
  3. Beaton AE, Tukey JW (1974) The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics 16(2):147–185CrossRefGoogle Scholar
  4. Cureton EE (1968) Unbiased estimation of the standard deviation. Am Stat 22(1):22Google Scholar
  5. Guttman I, Lin DKJ (1995) Robust recursive estimation for correlated observations. Stat Prob Lett 23:79–92CrossRefGoogle Scholar
  6. Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA (1986) Robust statistics, the approach based on influence functions. Wiley, New YorkGoogle Scholar
  7. Hekimoglu S (1997) Finite sample breakdown points of outlier detection procedures. J Surv Eng 125(1):15–31CrossRefGoogle Scholar
  8. Hekimoglu S (1999) Robustifying conventional outlier detection procedures. J Surv Eng 125(2):69–86CrossRefGoogle Scholar
  9. Huber PJ (1964) Robust estimation of a location parameter. Ann Math Stat 35(2):73–101CrossRefGoogle Scholar
  10. Huber PJ (1981) Robust statistics. Wiley, New YorkCrossRefGoogle Scholar
  11. Huber PJ (1984) Finite sample breakdown of M- and P-estimators. Ann Stat 12:119–126CrossRefGoogle Scholar
  12. Knight NL, Wang J, Rizos C (2010) Generalized measures of reliability for multiple outliers. J Geod 84:625–635CrossRefGoogle Scholar
  13. Koch KR (1981) Deviations from the null-hypothesis to be detected by statistical tests. Bull Géodés 55:41–48CrossRefGoogle Scholar
  14. Koch KR (1999) Parameter estimation and hypothesis testing in linear models, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  15. Koch KR (2013) Robust estimation by expectation maximization algorithm. J Geod 87(2):107–116CrossRefGoogle Scholar
  16. Koch KR (2015) Minimal detectable outliers as measures of reliability. J Geod 89(5):483–490CrossRefGoogle Scholar
  17. Kok JJ (1984) On data snooping and multiple outlier testing. NOAA Technical Report, NOS NGS. 30, U.S. Department of Commerce, Rockville, MarylandGoogle Scholar
  18. Krarup T, Kubik K, Juhl J (1980) Götterdämmerung. Over least squares. In: Proceedings of international society for photogrammetry 14th congress, Hamburg, pp 370–378Google Scholar
  19. Lehmann R (2012) Improved critical values for extreme normalized and studentized residuals in Gauss–Markov models. J Geod 86(12):1137–1146CrossRefGoogle Scholar
  20. Lehmann R, Lösler M (2016) Multiple outlier detection: hypothesis tests versus model selection by information criteria. J Surv Eng 142(4):04016017CrossRefGoogle Scholar
  21. Li B, Shen Y, Lou L (2011) Efficient estimation of variance and covariance components: a case study for GPS stochastic model evaluation. IEEE Trans Geosci Remote Sens 49(1):203–210CrossRefGoogle Scholar
  22. Mao S, Wang J, Pu X (1998) Advanced mathematical statistics, 2nd edn. China Higher Education Press, BeijingGoogle Scholar
  23. Ong EP, Spann M (1999) Robust optical flow computation based on least-median-of-squares regression. Int J Comput Vis 31(1):51–82CrossRefGoogle Scholar
  24. Pope AJ (1976) The test statistics of residuals and the detection of outliers. In: NOAA technical report NOS65 NGS 1. US Department of Commerce, National Geodetic Survey, Rockville, MarylandGoogle Scholar
  25. Prószyñski W (2000) On outlier-hiding effects in specific Gauss–Markov models: geodetic examples. J Geod 74:581–589CrossRefGoogle Scholar
  26. Ross SM (2014) A first course in probability, 9th edn. Pearson Education Limited, HarlowGoogle Scholar
  27. Rousseeuw P (1984) Least median of squares regression. J Am Stat Assoc 79(388):871–880CrossRefGoogle Scholar
  28. Rousseeuw PJ, Leroy AM (1987) Robust regression and outlier detection. Wiley, New York. ISBN 0-471-85233-3CrossRefGoogle Scholar
  29. Rousseeuw P, Yohai V (1984) Robust regression by means of S-estimators. In: Franke J, Härdle W, Martin D (eds) Robust and nonlinear time series analysis. Springer, Berlin, pp 256–272CrossRefGoogle Scholar
  30. Schaffrin B (1997) Reliability measures for correlated observations. J Surv Eng 123(3):126–137CrossRefGoogle Scholar
  31. Teunissen PJG (1998) Minimal detectable biases of GPS data. J Geod 72(4):236–244CrossRefGoogle Scholar
  32. Teunissen PJG (2006) Testing theory: an introduction, 2nd edn. Delft University Press, Delft. ISBN 9040719756Google Scholar
  33. Van Loon JP. (2008) Robust estimation and robust re-weighting in satellite gravity modelling. In: Xu P, Liu J, Dermanis A (eds) VI Hotine-Marussi symposium on theoretical and computational geodesy. International Association of Geodesy Symposia, vol 132. Springer, Berlin, pp 43–48Google Scholar
  34. Wang J, Chen Y (1994) On the reliability measure of observations. Acta Geodaetica et Cartographica Sinica, English Edition, pp 42–51Google Scholar
  35. Xu P (2005) Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness. J Geod 79(1–3):146–159CrossRefGoogle Scholar
  36. Yang Y (1994) Robust estimation for dependent observations. Manuscr Geod 19:10–17Google Scholar
  37. Yang Y, Cheng MK, Shum CK, Tapley BD (1999) Robust estimation of systematic errors of satellite laser range. J Geod 73:345–349CrossRefGoogle Scholar
  38. Yang Y, Song L, Xu T (2002) Robust estimator for correlated observations based on bifactor equivalent weights. J Geod 76:353–358CrossRefGoogle Scholar
  39. Yang L, Wang J, Knight NL, Shen Y (2013) Outlier separability analysis with a multiple alternative. J Geod 87:591–604CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Surveying and Geo-informaticsTongji UniversityShanghaiChina

Personalised recommendations