Information resources supporting scientific research for the international laser ranging service

  • Carey E. NollEmail author
  • Randall Ricklefs
  • Julie Horvath
  • Horst Mueller
  • Christian Schwatke
  • Mark Torrence
Original Article


The International Laser Ranging Service (ILRS) through its permanent components (Tracking Stations, Operations Centers, Data Centers, Analysis Centers, Central Bureau, and Governing Board) distributes satellite and lunar laser ranging data and derived products to support global, multidisciplinary scientific research. The ILRS Data Centers and Central Bureau serve as the primary source for information, data, and products for this global user community. The ILRS website,, is a key tool for communication for the service, providing background information on the ILRS, its organization and operation, and detailed descriptions of ILRS components, data, and products. Links are provided to extensive information on the supported satellite missions and ILRS network stations including performance assessments and data quality evaluations. Furthermore, the website connects users to archives of laser ranging data and derived products available through the data centers. In this paper, we discuss the development of the ILRS infrastructure, its current status, website resources, description of laser ranging data and products, and plans for future enhancements.


Laser ranging ILRS IAG Space geodesy GGOS Reference frames Tracking networks Precise orbit determination Earth orientation parameters 



The authors would like to acknowledge the support of the organizations contributing to the International Laser Ranging Service.


  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and earth orientation parameters. J Geophys Res Solid Earth 112:B09401. CrossRefGoogle Scholar
  2. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth 121:6109–6131. CrossRefGoogle Scholar
  3. Arnold D, Meindl M, Beutler G, Dach R, Schaer R, Lutz S, Prange L, Sosnica K, Mervart L, Jaeggi A (2015) CODE’s new solar radiation pressure model for GNSS orbit determination. J Geodesy 89(8):775–791. CrossRefGoogle Scholar
  4. Blewitt G, Bock Y, Kouba J (1995) Constructing the IGS polyhedron by distributed processing. In: Zumberge J (ed) Proceedings of the IGS workshop, IGS Central Bureau, Pasadena, CA, USA, pp 21–36Google Scholar
  5. Cerri L, Berthias JP, Bertiger WI, Haines BJ, Lemoine FG, Mercier F, Ries JC, Willis P, Zelensky NP, Ziebert M (2010) Precision orbit determination standards for the Jason series of altimeter missions. Mar Geodesy 33(S1):379–418. CrossRefGoogle Scholar
  6. Courde C, Torre J-M, Samain E, Martinot-Lagarde G, Aimar M, Albanese D, Exertier P, Fienga A, Mariey H, Metris G, Viot H, Viswanathan V (2017) Lunar laser ranging in infrared at the Grasse laser station. Astrophys, Astron. CrossRefGoogle Scholar
  7. Degnan J (1985) Satellite laser ranging: current status and future prospects. IEEE Trans Geosci Rem Sens 23(4):398–413. CrossRefGoogle Scholar
  8. Donlon C, Berutti B, Buongiorno A, Ferreira MH, Féménias P, Frederick J, Goryl P, Klein U, Laur H, Mavrocordatos C, Nieke J, Rebhan H, Seitz B, Stroede J, Sciarra R (2012) The global monitoring for environment and security (GMES) Sentinel-3 mission. Rem Sens Environ 120:37–57. CrossRefGoogle Scholar
  9. Dow J, Neilan R, Rizos C (2009) The international GNSS Service in a changing landscape of global navigation satellite systems. J Geodesy 83(3–4):191–198. CrossRefGoogle Scholar
  10. Guo F, Li XX, Zhang XH, Wang JL (2017) Assessment of precise orbit and clock products for Galileo, BeiDou, and QZSS from IGS Multi-GNSS experiment (MGEX). GPS Solut 21(1):279–290. CrossRefGoogle Scholar
  11. Hackel S, Montenbruck O, Steigenberger P, Balss U, Gisinger C, Einider M (2017) Model improvements and validation of TerraSAR-X precise orbit determination. J Geodesy 91(5):547–562. CrossRefGoogle Scholar
  12. Hilla S (2010) The extended standard product 3 orbit format (SP3-c). Accessed 15 Nov 2017
  13. Kucharski D et al (2014) Attitude and spin period of space debris envisat measured by satellite laser ranging. IEEE Trans Geosci Remote Sens 52(12):7651–7657. CrossRefGoogle Scholar
  14. Lemoine FG, Zelensky NP, Chinn DS, Pavlis DE, Rowlands DD, Beckley BD, Luthcke SB, Willis P, Ziebart M, Sibthorpe A, Luceri V (2010) Towards development of a consistent orbit series for TOPEX, Jason-1, and Jason-2. Adv Space Res 46(12):1513–1540. CrossRefGoogle Scholar
  15. Müller J, Hofmann F, Fang X, Biskupek L (2013) Lunar laser ranging: recent results based on refined modelling. In: Chris R, Pascal W (eds) Proceedings of the IAG general assembly, Melbourne, Australia, June 28–July 2, 2011. Series: International Association of Geodesy Symposia, vol 139, pp 447–452. Google Scholar
  16. Murphy TW (2009) Lunar ranging, gravitomagnetism, and APOLLO. Space Sci Rev 148(1–4):217–223. CrossRefGoogle Scholar
  17. Noll CE (2010) The crustal dynamics data information system: a resource to support scientific analysis in space geodesy. Adv Space Res 45(12):1421–1440. CrossRefGoogle Scholar
  18. Pavlis E, Luceri V (2007) Reanalysis and extension of the ILRS weekly products. Geophysical Research Abstracts, vol 9, SRef-ID: 1607-7962/gra/EGU2007-A-04963, 2007Google Scholar
  19. Pavlis E, Luceri V (2018) Operational and definitive products of the ILRS analysis standing committee. J Geod (Same issue)Google Scholar
  20. Pearlman M, Degnan J, Bosworth J (2002) The international laser ranging service. Adv Space Res 30(2):135–143. CrossRefGoogle Scholar
  21. Pearlman M, Noll C, Pavlis E, Lemoine F, Combrink L, Degnan J, Kirchner G, Schreiber U (2018) The ILRS: Approaching twenty years and planning for the future. J Geod (Same issue)Google Scholar
  22. Ricklefs R (2008) Consolidated laser prediction and data formats: supporting new technology. In: Luck J, Moore C, Wilson P (eds) Proceedings of the 15th international workshop on laser ranging, Canberra, EOS Space Systems Pty Limited, Canberra, Australia, pp 535–538Google Scholar
  23. Schrama E (2018) Precise orbit determination performance for CryoSat-2. Adv Space Res 61(1):235–247. CrossRefGoogle Scholar
  24. Schreiber U, Prochazka I, Lauber P, Hugentobler U, Schafer W (2009) The European laser timing (ELT) experiment on-board ACES. In: Proceedings of the 2009 frequency control symposium, Besançon, France, April 20–24, 2009.
  25. Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80. CrossRefGoogle Scholar
  26. Schutz BE, Zwally HJ, Shuman CA, Hancock D, Dimarzio JP (2005) Overview of the ICESAT mission. Geophys Res Lett 32(21):L21S01. CrossRefGoogle Scholar
  27. Seeber G (2003) Satellite Geodesy. Walter de Gruyter, Berlin. ISBN 3-11-017549-5CrossRefGoogle Scholar
  28. Sinclair AT (1997) Data screening and normal point formulation. International Laser Ranging Service. Accessed 17 Nov 2017
  29. Steigenberger P, Montenbruck O (2017) Galileo status: orbits, clocks, and positioning. GPS Solut 21:319–321. CrossRefGoogle Scholar
  30. Willis P, Fagard H, Ferrage P, Lemoine F, Noll C, Noomen R, Otten M, Ries J, Rothacher M, Soudarin L, Tavernier G, Valette J (2010) The international DORIS service (IDS): toward maturity. Adv Space Res 45(12):1408–1420. CrossRefGoogle Scholar
  31. World Data System: Trusted data services for global science. ICSU World Data System.

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  • Carey E. Noll
    • 1
    Email author
  • Randall Ricklefs
    • 2
  • Julie Horvath
    • 3
  • Horst Mueller
    • 4
  • Christian Schwatke
    • 4
  • Mark Torrence
    • 5
  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.University of Texas at Austin/CSRAustinUSA
  3. 3.NASA Goddard Space Flight Center/KBRwyleLanhamUSA
  4. 4.Deutsches Geodätisches Forschungsinstitut/Technische Universität München (DGFI-TUM)MunichGermany
  5. 5.NASA Goddard Space Flight Center/SGT Inc.GreenbeltUSA

Personalised recommendations