Advertisement

Journal of Geodesy

, Volume 93, Issue 6, pp 791–807 | Cite as

Empirically derived model of solar radiation pressure for BeiDou GEO satellites

  • Chen Wang
  • Jing GuoEmail author
  • Qile Zhao
  • Jingnan Liu
Original Article

Abstract

A key limitation in the precise orbit determination (POD) of BeiDou geostationary Earth orbit (GEO) satellites is the relatively static observation geometry, which results in strong correlations between orbital elements, solar radiation pressure (SRP) parameters, and ambiguities. Satellite laser ranging (SLR) residuals of BeiDou G01 satellite orbits display a clear dependence on the Sun elongation angle ε, as well as a bias of approximately − 40 cm. These indicate the low performance of BeiDou GEO orbits. In this study, we confirmed that the perturbation caused by the communication antenna generates the ε-angle-dependent variation and the bias of approximately − 14.9 cm in BeiDou G01 SLR residuals. Besides, the orbit-normal (ON) attitude mode used by BeiDou GEO satellites as well as an orbital inclination of nearly 0° results in strong linear correlations between the POD estimated parameters, i.e., satellite’s initial position on the Z-axis and the constant Y-bias along the cross-track direction. Hence, the solar pressure models, such as Extended CODE Orbit Model (ECOM) in ON mode, with the Y-axis along the cross-track direction are deficient for SRP estimation of BeiDou GEO satellites. In this study, an empirical a priori SRP model was established for BeiDou GEO satellites to enhance the ECOM using an empirical fitting approach. This proposed model is expressed in DYB frame using eight parameters. With this model, precise BeiDou GEO orbits in 2016 were determined. SLR validation indicated that the systematic ε-angle-dependent error was reduced and the large negative bias almost vanished. In general, better than 10-cm root-mean-square of SLR validation was achieved, and also an improvement of 4–5 times over the five-parameter ECOM model was obtained.

Keywords

BeiDou Solar radiation pressure Precise orbit determination GNSS 

Abbreviations

ABW

Adjustable box-wing

BETN

BeiDou Experimental Tracking Network

CA

Communication antenna

CODE

Center for Orbit Determination in Europe

ECOM

Extended CODE Orbit Model

ECOM-ON

ECOM for orbit-normal mode

ECOM-YS

ECOM for yaw-steering mode

GEO

Geostationary Earth orbit

GNSS

Global Navigation Satellite System

IGSO

Inclined geosynchronous orbit

LRA

Laser retroreflector array

MEO

Medium Earth orbit

MGEX

Multi-GNSS Experiment

OBD

Orbit boundary discontinuity

ON

Orbit-normal mode

POD

Precise orbit determination

RDSS

Radio determination satellite service

RNSS

Radio navigation satellite service

SLR

Satellite Laser Ranging

SRP

Solar radiation pressure

SP

Solar panel

YS

Yaw steering mode

Notes

Acknowledgements

The IGS MGEX, iGMAS, and ILRS are greatly acknowledged for providing the Multi-GNSS and SLR tracking data. The research is partially supported by the National Natural Science Foundation of China (Grant No. 41504009, 41574030). Finally, the authors are also grateful for the comments and remarks of three reviewers and editor, which helped to significantly improve the manuscript.

References

  1. Arnold D, Meindl M, Beutler G, Dach R, Schaer S, Lutz S, Prange L, Sośnica K, Mervart L, Jäggi A (2015) CODE’s new solar radiation pressure model for GNSS orbit determination. J Geod 89(8):775–791.  https://doi.org/10.1007/s00190-015-0814-4 CrossRefGoogle Scholar
  2. Bar-Sever YE (1996) A new model for GPS yaw attitude. J Geod 70(11):714–723.  https://doi.org/10.1007/BF00867149 CrossRefGoogle Scholar
  3. Bar-Sever Y, Kuang D (2004) New empirically derived solar radiation pressure model for Global Positioning System satellites. Jet Propulsion Laboratory, Pasadena, CA, USA, pp 1–11. https://ipnpr.jpl.nasa.gov/progress_report/42-159/159I.pdf. Accessed 10 June 2018
  4. Bar-Sever Y, Kuang D (2005) New empirically derived solar radiation pressure model for Global Positioning System satellites during eclipse seasons. Interplanetary Network Progress Report 42-160, Jet Propulsion Laboratory, Pasadena, CA, USA, pp 1–4. https://ipnpr.jpl.nasa.gov/progress_report/42-160/160I.pdf. Accessed 10 June 2018
  5. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the International GPS Service for Geodynamics (IGS): theory and initial results. Manuscr Geod 19(6):367–386Google Scholar
  6. Dilssner F (2010) GPS IIF-1 satellite antenna phase center and attitude modelling. Inside GNSS. September, 2010, pp 59–64Google Scholar
  7. Dilssner F, Springer T, Gienger G, Dow J (2011) The GLONASS-M satellite yaw-attitude model. Adv Space Res 47(1):160–171.  https://doi.org/10.1016/j.asr.2010.09.007 CrossRefGoogle Scholar
  8. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198.  https://doi.org/10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  9. Dudok de Wit T, Kopp G, Fröhlich C, Schöll M (2017) Methodology to create a new total solar irradiance record: making a composite out of multiple data records. Geophys Res Lett 44:1196–1203.  https://doi.org/10.1002/2016GL071866 CrossRefGoogle Scholar
  10. Eastes RW, McClintock WE, Burns AG, Anderson DN, Andersson L, Codrescu M, Correira JT, Daniell RE, England SL, Evans JS, Harvey J, Krywonos A, Lumpe JD, Richmond AD, Rusch DW, Siegmund O, Solomon SC, Strickland DJ, Woods TN, Aksnes A, Budzien SA, Dymond KF, Eparvier FG, Martinis CR, Oberheide J (2017) The Global-Scale Observations of the Limb and Disk (GOLD) mission. Space Sci Rev 212:383–408.  https://doi.org/10.1007/s11214-017-0392-2 CrossRefGoogle Scholar
  11. Fliegel HF, Gallini TE (1996) Solar force modeling of block IIR Global Positioning System satellites. J Spacecraft Rockets 33(6):863–866.  https://doi.org/10.2514/3.26851 CrossRefGoogle Scholar
  12. Fliegel HF, Gallini TE, Swift ER (1992) Global Positioning System radiation force model for geodetic applications. J Geophys Res 97(B1):559–568.  https://doi.org/10.1029/91JB02564 CrossRefGoogle Scholar
  13. Früh C, Jah MK (2014) Coupled orbit-attitude motion of high area-to-mass ratio (HAMR) objects including efficient self-shadowing. Acta Astronaut 95:227–241.  https://doi.org/10.1016/j.actaastro.2013.11.017 CrossRefGoogle Scholar
  14. Ge H, Li B, Ge M, Shen Y, Schuh H (2017) Improving BeiDou precise orbit determination using observations of onboard MEO satellite receivers. J Geod 91(12):1447–1460.  https://doi.org/10.1007/s00190-017-1035-9 CrossRefGoogle Scholar
  15. Griffiths J, Ray JM (2009) On the precision and accuracy of IGS orbits. J Geod 83(3–4):277–287.  https://doi.org/10.1007/s00190-008-0237-6 CrossRefGoogle Scholar
  16. Guo J, Xu X, Zhao Q, Liu J (2016) Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison. J Geod 90(2):143–159.  https://doi.org/10.1007/s00190-015-0862-9 CrossRefGoogle Scholar
  17. Guo F, Li X, Zhang X, Wang J (2017a) Assessment of precise orbit and clock products for Galileo, BeiDou, and QZSS from IGS Multi-GNSS Experiment (MGEX). GPS Solut 21(1):279–290.  https://doi.org/10.1007/s10291-016-0523-3 CrossRefGoogle Scholar
  18. Guo J, Chen G, Zhao Q, Liu J, Liu X (2017b) Comparison of solar radiation pressure models for BDS IGSO and MEO satellites with emphasis on improving orbit quality. GPS Solut 21(2):511–522.  https://doi.org/10.1007/s10291-016-0540-2 CrossRefGoogle Scholar
  19. Guo J, Wang C, Zhao Q, Li Z, Liu J (2017c) Solar radiation pressure model for BeiDou GEO satellites. In: IGS workshop, 3–7 July 2017, Paris, FranceGoogle Scholar
  20. Kouba J (2009) A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solut 13(1):1–12.  https://doi.org/10.1007/s10291-008-0092-1 CrossRefGoogle Scholar
  21. Liu J, Gu D, Ju B, Shen Z, Lai Y, Yi D (2016) A new empirical solar radiation pressure model for BeiDou GEO satellites. Adv Space Res 57(1):234–244.  https://doi.org/10.1016/j.asr.2015.10.043 CrossRefGoogle Scholar
  22. Luthcke SB, Marshall JA, Rowton SC et al (1997) Enhanced radiative force modeling of the tracking and data relay satellites. J Astronaut Sci 45(3):349–370Google Scholar
  23. Marshall JA, Luthcke SB (1994) Modeling radiation forces acting on TOPEX/Poseidon for precision orbit determination. J Spacecr Rockets 31(1):99–105.  https://doi.org/10.2514/3.26408 CrossRefGoogle Scholar
  24. Mazarico E, Zuber MT, Lemoine FG, Smith DE (2009) Effects of self-shadowing on nonconservative force modeling for mars-orbiting spacecraft. J Spacecr Rockets 46(3):662–669.  https://doi.org/10.2514/1.41679 CrossRefGoogle Scholar
  25. Milani A, Nobili AM, Farinella P (1987) Non-gravitational perturbations and satellite geodesy. Adam Hilger, BristolGoogle Scholar
  26. Montenbruck O, Schmid R, Mercier F, Steigenberger P, Noll C, Fatkulin R, Kogure S, Ganeshan AS (2015a) GNSS satellite geometry and attitude models. Adv Space Res 56(6):1015–1029.  https://doi.org/10.1016/j.asr.2015.06.019 CrossRefGoogle Scholar
  27. Montenbruck O, Steigenberger P, Hugentobler U (2015b) Enhanced solar radiation pressure modeling for Galileo satellites. J Geod 89(3):283–297.  https://doi.org/10.1007/s00190-014-0774-0 CrossRefGoogle Scholar
  28. Montenbruck O, Steigenberger P, Prange L, Deng Z, Zhao Q, Perosanz F, Romero I, Noll C, Stürze A, Weber G, Schmid R, MacLeod K, Schaer S (2017a) The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)—achievements, prospects and challenges. Adv Space Res 59(7):1671–1697.  https://doi.org/10.1016/j.asr.2017.01.011 CrossRefGoogle Scholar
  29. Montenbruck O, Steigenberger P, Darugna F (2017b) Semi-analytical solar radiation pressure modeling for QZS-1 orbit-normal and yaw-steering attitude. Adv Space Res 59(8):2088–2100.  https://doi.org/10.1016/j.asr.2017.01.036 CrossRefGoogle Scholar
  30. Pearlman MR, Degnan JJ, Bosworth JM (2002) The International Laser Ranging Service. Adv Space Res 30(2):135–143.  https://doi.org/10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  31. Petit G, Luzum B (2010) IERS conventions 2010, technical report. IERS Convention CenterGoogle Scholar
  32. Rodriguez-Solano CJ, Hugentobler U, Steigenberger P (2012) Adjustable box-wing model for solar radiation pressure impacting GPS satellites. Adv Space Res 49(7):1113–1128.  https://doi.org/10.1016/j.asr.2012.01.016 CrossRefGoogle Scholar
  33. Rodriguez-Solano CJ, Hugentobler U, Steigenberger P, Allende-Alba G (2013) Improving the orbits of GPS block IIA satellites during eclipse seasons. Adv Space Res 52(8):1511–1529.  https://doi.org/10.1016/j.asr.2013.07.013 CrossRefGoogle Scholar
  34. Springer TA, Beutler G, Rothacher M (1999) A new solar radiation pressure model for GPS satellites. GPS Solut 2(3):50–62.  https://doi.org/10.1007/PL00012757 CrossRefGoogle Scholar
  35. Steigenberger P, Hugentobler U, Hauschild A, Montenbruck O (2013) Orbit and clock analysis of Compass GEO and IGSO satellites. J Geod 87(6):515–525.  https://doi.org/10.1007/s00190-013-0625-4 CrossRefGoogle Scholar
  36. Steigenberger P, Montenbruck O, Hugentobler U (2015) GIOVE-B solar radiation pressure modeling for precise orbit determination. Adv Space Res 55(5):1422–1431.  https://doi.org/10.1016/j.asr.2014.12.009 CrossRefGoogle Scholar
  37. Steigenberger P, Thoelert S, Montenbruck O (2018) GNSS satellite transmit power and its impact on orbit determination. J Geod 92(6):1–16.  https://doi.org/10.1007/s00190-017-1082-2 CrossRefGoogle Scholar
  38. Sun B, Su H, Zhang Z, Kong Y, Yang X (2016) GNSS GEO satellites precise orbit determination based on carrier phase and SLR observations. In: IGS workshop 2016, 8–12 Feb 2016, Sydney, AustraliaGoogle Scholar
  39. Tan B, Yuan Y, Zhang B, Hsu H, Ou J (2016) A new analytical solar radiation pressure model for current BeiDou satellites: IGGBSPM. Sci Rep 6:32967.  https://doi.org/10.1038/srep32967 CrossRefGoogle Scholar
  40. Zhao Q, Guo J, Li M, Qu L, Hu Z, Shi C, Liu J (2013) Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J Geod 87(5):475–486.  https://doi.org/10.1007/s00190-013-0622-7 CrossRefGoogle Scholar
  41. Zhao Q, Chen G, Guo J, Liu J, Liu X (2017a) An a priori solar radiation pressure model for the QZSS Michibiki satellite. J Geod.  https://doi.org/10.1007/s00190-017-1048-4 Google Scholar
  42. Zhao Q, Wang C, Guo J, Yang G, Liao M, Ma H, Liu J (2017b) Enhanced orbit determination for BeiDou satellites with FengYun-3C onboard GNSS data. GPS Solut 21(3):1179–1190.  https://doi.org/10.1007/s10291-017-0604-y CrossRefGoogle Scholar
  43. Zhao Q, Wang C, Guo J, Wang B, Liu J (2018) Precise orbit and clock determination for BeiDou-3 experimental satellites with yaw attitude analysis. GPS Solut 22:4.  https://doi.org/10.1007/s10291-017-0673-y CrossRefGoogle Scholar
  44. Ziebart M (2004) Generalized analytical solar radiation pressure modeling algorithm for spacecraft of complex shape. J Spacecr Rockets 41(5):840–848.  https://doi.org/10.2514/1.13097 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GNSS Research CenterWuhan UniversityWuhanChina
  2. 2.Collaborative Innovation Center of Geospatial TechnologyWuhan UniversityWuhanChina
  3. 3.School of EngineeringNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations