Journal of Geodesy

, Volume 93, Issue 5, pp 655–667 | Cite as

On the impact of local ties on the datum realization of global terrestrial reference frames

  • Susanne GlaserEmail author
  • Rolf König
  • Karl Hans Neumayer
  • Tobias Nilsson
  • Robert Heinkelmann
  • Frank Flechtner
  • Harald Schuh
Original Article


Local ties (LTs) at co-located sites are currently used to combine different single-technique solutions to determine global terrestrial reference frames (TRFs). We assess by simulations the impact of different LT standard deviations, biased LTs and a selection of LTs on the datum realization of global TRFs. The simulations are based on Global Positioning System (GPS), Satellite Laser Ranging, and Very Long Baseline Interferometry (VLBI) observations covering the time span 2008–2014. We find that LT standard deviations of 1 cm and better yield differences in the TRF-defining parameters below 1 mm. VLBI is most affected by altering the LT standard deviations, especially in the translations since VLBI is inherently not sensitive to the origin of the TRF. Altering the standard deviations of the LTs applied in ITRF2005, ITRF2008, ITRF2014 results in small differences reaching a maximum of 0.6 mm at the VLBI stations. Simulating technique-wise biased LT stations shows the largest differences in the TRF-defining parameters of more than 2 mm, if all GPS LT stations are biased by 1 cm, proving that GPS plays the major role in the connection of the three techniques. Simulating single biased LT stations by 1 cm in either the north, east, or height component indicates small differences of less than 0.8 mm in the TRF-defining parameters, the largest differences result at LT stations located on the southern hemisphere. The selection of LTs demonstrates that the southern hemisphere LTs are very important, especially for the realization of the scale.


Local ties Global terrestrial reference frame GPS VLBI SLR Simulation 



This work has been supported by the German Research Foundation (DFG) under Grant Number SCHU 1103/8-1 (GGOS-SIM, Simulation of the Global Geodetic Observing System) and by the Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V. under Grant Number ZT-0007 (ADVANTAGE, Advanced Technologies for Navigation and Geodesy). The IGS (Dow et al. 2009), the IVS (Schuh and Behrend 2012; Nothnagel et al. 2015), and the ILRS (Pearlman et al. 2002) are acknowledged for providing data used within this study. The authors would like to thank Claudio Abbondanza and two anonymous reviewers for their valuable comments on the manuscript.


  1. Abbondanza C, Chin TM, Gross RS, Heflin MB, Parker JW, Soja BS, van Dam T, Wu X (2017) JTRF2014, the JPL Kalman filter and smoother realization of the International Terrestrial Reference System. J Geophys Res Solid Earth 122(10):8474–8510. Google Scholar
  2. Altamimi Z, Collilieux X (2009) IGS contribution to the ITRF. J Geod 83(3):375–383. Google Scholar
  3. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. J Geophys Res 107(B10):2214. Google Scholar
  4. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res 112(B09):401. Google Scholar
  5. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85(8):457–473. Google Scholar
  6. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016a) ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth. Google Scholar
  7. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016b) ITRF2014 and the IGS contribution. In: IGS Workshop, Sydney, 8–12 February 2016. Accessed 20 Aug 2018
  8. Bar-Sever Y, Haines B, Heflin M, Kuang D, Sibois A, Nerem R (2015) GRASP 2015—revised design and data analysis for a mission to improve the terrestrial reference frame. In: Abstract IUGG-4145 presented at 26th IUGG general assembly 2015, Prague, Czech Republic, June 22–July 2. Accessed 20 Aug 2018
  9. Biancale R (2016) E-GRASP/Eratosthenes: a satellite mission proposal submitted to the ESA/Earth Explorer-9 call. In: Abstract presented at first international workshop on VLBI observations of near-field targets 2016, Bonn, Germany, October 5–October 6. Accessed 20 Aug 2018
  10. Bizouard C, Gambis D (2011) Combined solution C04 for Earth Rotation Parameters consistent with International Terrestrial Reference Frame 2014. Accessed 20 Aug 2018
  11. Boucher C, Pearlman M, Sarti P (2015) Global geodetic observatories. Adv Space Res 55(1):24–39. Google Scholar
  12. Dow J, Neilan R, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3):191–198. Google Scholar
  13. Glaser S, Fritsche M, Sośnica K, Rodríguez-Solano CJ, Wang K, Dach R, Hugentobler U, Rothacher M, Dietrich R (2015) A consistent combination of GNSS and SLR with minimum constraints. J Geod 89(12):1165–1180. Google Scholar
  14. Glaser S, Fritsche M, Sośnica K, Rodríguez-Solano CJ, Wang K, Dach R, Hugentobler U, Rothacher M, Dietrich R (2015) Validation of components of local ties. Springer, Cham, pp 21–28.
  15. Glaser S, Ampatzidis D, König R, Nilsson T, Heinkelmann R, Flechtner F, Schuh H (2016) Simulation of VLBI observations to determine a global TRF for GGOS. In: Freymueller JT, Sánchez L (eds) International Symposium on Earth and Environmental Sciences for Future Generations. International Association of Geodesy Symposia, vol 147. Springer, Cham, pp 3–9.
  16. Glaser S, König R, Ampatzidis D, Nilsson T, Heinkelmann R, Flechtner F, Schuh H (2017) A Global Terrestrial Reference Frame from simulated VLBI and SLR data in view of GGOS. J Geod 91(7):723–733. Google Scholar
  17. Gross R, Beutler G, Plag HP (2009) Integrated scientific and societal user requirements and functional specifications for the GGOS. In: Plag H-P, Pearlman M (eds) Global Geodetic Observing System: meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin, pp 209–224.
  18. Kallio U, Poutanen M (2012) Can we really promise a mm-accuracy for the local ties on a geo-VLBI antenna. Springer, Berlin, pp 35–42.
  19. Koch KR (1999) Parameter estimation and hypothesis testing in linear models, 2nd edn. Springer, Berlin. (original German edition published by Dümmler, Bonn)
  20. Lösler M, Haas R, Eschelbach C (2016) Terrestrial monitoring of a radio telescope reference point using comprehensive uncertainty budgeting. J Geod 90(5):467–486. Google Scholar
  21. Männel B, Thaller D, Rothacher M, Böhm J, Müller J, Glaser S, Dach R, Biancale R, Bloßfeld M, Kehm A, Herrera Pinzón I, Hofmann F, Andritsch F, Coulot D, Pollet A (2018) Recent activities of the GGOS standing committee on performance simulations and architectural trade-offs (PLATO). Springer, Berlin, pp 1–4.
  22. Niemeier W (2008) Ausgleichungsrechnung: statistische Auswertemethoden. Walter de Gruyter, Berlin. ISBN 978-3-11-020678-4.
  23. Nilsson T, Soja B, Karbon M, Heinkelmann R, Schuh H (2015) Application of Kalman filtering in VLBI data analysis. Earth Planets Space 67(1):1–9. Google Scholar
  24. Nothnagel A et al (2015) The IVS data input to ITRF2014. International VLBI service for geodesy and astrometry, GFZ data services. Google Scholar
  25. Pearlman M, Degnan J, Bosworth J (2002) The International Laser Ranging Service. Adv Space Res 30(2):135–143. Google Scholar
  26. Ray J, Altamimi Z (2005) Evaluation of co-location ties relating the VLBI and GPS reference frames. J Geod 79(4–5):189–195. Google Scholar
  27. Sarti P, Sillard P, Vittuari L (2004) Surveying co-located space-geodetic instruments for ITRF computation. J Geod 78(3):210–222. Google Scholar
  28. Sarti P, Abbondanza C, Altamimi Z (2013) Local ties and co-location sites: some considerations after the release of ITRF2008. In: Altamimi Z, Collilieux X (eds) Reference Frames for Applications in Geosciences. International Association of Geodesy Symposia, vol 138. Springer, Berlin, Heidelberg, pp 75–80.
  29. Schuh H, Behrend D (2012) VLBI: A fascinating technique for geodesy and astrometry. J Geodyn 61:68–80. Google Scholar
  30. Schuh H, König R, Ampatzidis D, Glaser S, Flechtner F, Heinkelmann R, Nilsson TJ (2015) GGOS-SIM: simulation of the reference frame for the global geodetic observing system. In: van Dam T (ed) REFAG 2014. International Association of Geodesy Symposia, vol 146. Springer, Cham, pp 95–100.
  31. Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of the ITRS: DTRF2008. J Geod 86(12):1097–1123.
  32. Seitz M, Angermann D, Blofeld M, Gerstl M, Müller H (2015) ITRS Combination Centres-Deutsches Geodätisches Forschungsinstitut (DGFI). In: Dick WR, Thaller D (eds) International Earth Rotation and Reference Systems Service, Central Bureau. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, pp 130–135. ISBN 978-3-86482-087-8.
  33. Seitz M, Bloßfeld M, Angermann D, Schmid R, Gerstl M, Seitz F (2016) The new DGFI-TUM realization of the ITRS: DTRF2014 (data). Deutsches Geodätisches Forschungsinstitut, Munich. Google Scholar
  34. Thaller D, Dach R, Seitz M, Beutler G, Mareyen M, Richter B (2011) Combination of GNSS and SLR observations using satellite co-locations. J Geod 85(5):257–272. Google Scholar
  35. Zhu S, Reigber C, König R (2004) Integrated adjustment of CHAMP, GRACE, and GPS data. J Geod 78(1–2):103–108. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Geodesy and Geoinformation ScienceTechnische Universität BerlinBerlinGermany
  2. 2.GFZ German Research Centre for GeosciencesPotsdamGermany
  3. 3.GFZ German Research Centre for GeosciencesOberpfaffenhofenGermany
  4. 4.GFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations