Journal of Geodesy

, Volume 93, Issue 5, pp 621–633 | Cite as

The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014

  • Christian BizouardEmail author
  • Sébastien Lambert
  • César Gattano
  • Olivier Becker
  • Jean-Yves Richard
Original Article


The Earth Orientation Center of the International Earth Rotation and Reference Systems Service (IERS) has the task to provide the scientific community with the international reference time series of Earth orientation parameters (EOP), referred to as IERS EOP C04 or C04. These series result from a combination of operational EOP series derived from VLBI, GNSS, SLR, and DORIS. The C04 series were updated to provide EOP series consistent with the set of station coordinates of the ITRF 2014. The new C04, referred to as IERS EOP 14C04, is aligned onto the most recent versions of the conventional reference frames (ITRF 2014 and ICRF2). Additionally, the combination algorithm was revised to include an improved weighting of the intra-technique solutions. Over the period 2010–2015, differences to the IVS combination exhibit standard deviations of 40 \(\upmu \)as for nutation and 10 \(\upmu \)s for UT1. Differences to the IGS combination reveal a standard deviation of 30 \(\upmu \)as for polar motion. The IERS EOP 14C04 was adopted by the IERS directing board as the IERS reference series by February 1, 2017.


Earth rotation Space and geodetic techniques Combination 



The authors are grateful to N. Stamatakos and Z. Altamimi for their validation and analyses of the 14C04 solution; to D. Gambis, C. Hackman, J. Ray, Z. Malkin, E. Pavlis, and A. Nothnagel for their useful comments. This work was financially supported by CNES, through the TOSCA program, and by the Scientific Council of the Paris Observatory.


  1. Abbondanza C, Chin TM, Gross RS, Heflin MB, Parker JW, Soja BS, van Dam T, Wu X (2017) JTRF2014, the JPL Kalman filter, smoother realization of the international terrestrial reference system. J Geophys Res Solid Earth. Google Scholar
  2. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 8(85):457–473CrossRefGoogle Scholar
  3. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth 8(121):6109–6131. CrossRefGoogle Scholar
  4. Barnes RTH, Hide R, White AA, Wilson CA (1983) Atmospheric angular momentum fluctuations, length-of-day changes and polar motion. Proc R Soc Lond Ser A 387:31–73. CrossRefGoogle Scholar
  5. Bar-Sever Y, Russ KM (1997) New and improved solar radiation models for GPS satellites based on flight data. JPL Final Report (RF-182/808), 30 pGoogle Scholar
  6. Belda S, Heinkelmann R, Ferrándiz JM, Nilsson T, Schuh H (2017) On the consistency of the current conventional EOP series and the celestial and terrestrial reference frames. J Geod 91:135–149. CrossRefGoogle Scholar
  7. Bizouard C (2018) Geophysical modelling of the polar motion.
  8. Bizouard C, Gambis D (2009) The combined solution C04 for Earth orientation parameters consistent with International Terrestrial Reference Frame 2005. In: geodetic reference frames: IAG symposium Munich, Germany, 9–14 October 2006. Springer, Berlin, pp 265–270.
  9. Capitaine N, Wallace PT, Chapront J (2003) Expressions for IAU 2000 precession quantities. Astron Astrophys 2(412):567–586CrossRefGoogle Scholar
  10. Chao BF (1984) Interannual length-of-day variation with relation to the Southern Oscillation/El Niño. Geophys Res Lett 5(11):541–544CrossRefGoogle Scholar
  11. Chao BF, Hsieh Y (2015) The Earth’s free core nutation: formulation of dynamics and estimation of eigenperiod from the very-long-baseline interferometry data. Earth Planet Sci Lett 432:483–492CrossRefGoogle Scholar
  12. Chao F, Yan H (2010) Relation between length-of-day variation and angular momentum of geophysical fluids. J Geophys Res Solid Earth B10:115. Google Scholar
  13. Chen JL, Wilson CR, Ries JC, Tapley BD (2013) Rapid ice melting drives Earth’s pole to the east. Geophys Res Lett 11(40):2625–2630. CrossRefGoogle Scholar
  14. Defraigne P, Smits I (1999) Length of day variations due to zonal tides for an inelastic Earth in non-hydrostatic equilibrium. Geophys J Int 2(139):563–572. CrossRefGoogle Scholar
  15. Dehant V, Feissel-Vernier M, de Viron O, Ma C, Yseboodt M, Bizouard C (2003) Remaining error sources in the nutation at the submilliarc second level. J Geophys Res Solid Earth B5:108. Google Scholar
  16. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 3(83):191–198. CrossRefGoogle Scholar
  17. Durando G, Mana G (2002) Propagation of error analysis in least-squares procedures with second-order autoregressive measurement errors. Meas Sci Technol 10(13):1505CrossRefGoogle Scholar
  18. Feissel-Vernier M, de Viron O, Le Bail K (2007) Stability of VLBI, SLR, DORIS, and GPS positioning. Earth Planets Space 59:475–497CrossRefGoogle Scholar
  19. Fey AL, Gordon D, Jacobs CS, Ma C, Gaume RA, Arias EF, Bianco G, Boboltz DA, Böckmann S, Bolotin S et al (2015) The second realization of the international celestial reference frame by very long baseline interferometry. Astron J 2(150):58CrossRefGoogle Scholar
  20. Gipson J (2007) Incorporating correlated station dependent noise improves VLBI estimates. In: Proceeding of the 18th European VLBI for geodesy and astrometry working meeting, Vienna, pp 12–13Google Scholar
  21. Griffiths J, Ray J (2016) Impacts of GNSS position offsets on global frame stability. Geophys J Int 1(204):480–487. CrossRefGoogle Scholar
  22. Herring TA, Mathews PM, Buffett BA (2002) Modeling of nutation–precession: very long baseline interferometry results. J Geophys Res Solid Earth B4:107. Google Scholar
  23. Hide R, Boggs Dale H, Dickey JO (2000) Angular momentum fluctuations within the Earth’s liquid core and torsional oscillations of the core-mantle system. Geophys J Int 3(143):777–786CrossRefGoogle Scholar
  24. Holme R, de Viron O (2013) Characterization and implications of intradecadal variations in length of day. Nature 7457(499):202–204CrossRefGoogle Scholar
  25. IDS, International DORIS Service (2018).
  26. Kalarus M, Schuh H, Kosek W, Akyilmaz O, Bizouard C, Gambis D, Gross R, Jovanović B, Kumakshev S, Kutterer H, Mendes Cerveira PJ, Pasynok S, Zotov L (2010) Achievements of the Earth orientation parameters prediction comparison campaign. J Geod 84:587–596. CrossRefGoogle Scholar
  27. Malkin Z (2016) Application of the allan variance to time series analysis in astrometry and geodesy: a review. IEEE Trans Ultrason Ferroelectr Freq Control 4(63):582–589. CrossRefGoogle Scholar
  28. Mathews PM, Herring TA, Buffett BA (2002) Modeling of nutation and precession: new nutation series for nonrigid Earth and insights into the Earth’s interior. J Geophys Res Solid Earth B4:107. Google Scholar
  29. Pearlman M, Noll C, Dunn P, Horvath J, Husson V, Stevens P, Torrence M, Vo H, Wetzel S (2005) The international laser ranging service and its support for IGGOS, the global geodetic observing system. J Geodyn 4–5(40):470–478. CrossRefGoogle Scholar
  30. Petit G, Luzum B (2010) IERS conventions 2010. IERS Technical Note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, p 179Google Scholar
  31. Plag H-P, Beutler G, Gross R, Herring TA, Poli P, Rizos C, Rothacher M, Rummel R, Sahagian D, Zumberge J (2009) Recommendations. In: Plag H-P, Michael P (eds) Global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020, pp 283–291.
  32. Ponte RM, Stammer D, Marshall J (1998) Oceanic signals in observed motions of the Earth’s pole of rotation. Nature 6666(391):476–479. CrossRefGoogle Scholar
  33. Ray RD, Erofeeva SY (2014) Long-period tidal variations in the length of day. J Geophys Res Solid Earth 2(119):1498–1509. CrossRefGoogle Scholar
  34. Rosen Richard D, Salstein David A (1983) Variations in atmospheric angular momentum on global and regional scales and the length of day. J Geophys Res Oceans C9(88):5451–5470. CrossRefGoogle Scholar
  35. Seitz M, Blossfeld M, Angermann D, Schmid R, Gerstl M, Seitz F (2016) The new DGFI-TUM realization of the ITRS: DTRF2014 (data). PANGAEA. Google Scholar
  36. Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80CrossRefGoogle Scholar
  37. Vondrák J (1969) A contribution to the problem of smoothing observational data. Bull Astron Inst Czechoslov 349:20Google Scholar
  38. Willis P, Fagard H, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten M, Ries JC, Rothacher M, Soudarin L, Tavernier G, Valette J-J (2010) The international DORIS service (IDS): toward maturity, DORIS: scientific applications in geodesy and geodynamics. Adv Space Res 12(45):1408–1420. CrossRefGoogle Scholar
  39. Yoder CF, Williams JG, Dickey JO, Schutz BE, Eanes RJ, Tapley BD (1983) Secular variation of Earth’s gravitational harmonic J2 coefficient from LAGEOS and nontidal acceleration of Earth rotation. Nature 303:757–762. CrossRefGoogle Scholar
  40. Zhu SY, Mueller II (1983) Effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame. Bull Géod 1(57):29–42. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Christian Bizouard
    • 1
    Email author
  • Sébastien Lambert
    • 1
  • César Gattano
    • 2
  • Olivier Becker
    • 1
  • Jean-Yves Richard
    • 1
  1. 1.Observatoire de Paris / SYRTE, Groupe universitaire PSL, CNRSUniversités de la SorbonneParisFrance
  2. 2.Laboratoire d’Astrophysique de BordeauxParisFrance

Personalised recommendations