Advertisement

Consistent estimation of geodetic parameters from SLR satellite constellation measurements

  • Mathis Bloßfeld
  • Sergei Rudenko
  • Alexander Kehm
  • Natalia Panafidina
  • Horst Müller
  • Detlef Angermann
  • Urs Hugentobler
  • Manuela Seitz
Original Article
  • 15 Downloads

Abstract

In this paper, we consistently estimate geodetic parameters such as weekly 3-D station coordinates, Earth orientation parameters (EOP) including daily x/y-pole coordinates and the excess length of day \(\Delta \hbox {LOD}\), and selected weekly Earth’s gravitational field (Stokes) coefficients up to degree and order 6 from Satellite Laser Ranging measurements to up to 11 geodetic satellites. The SLR constellation consists of LAGEOS-1/2, Etalon-1/2, Stella, Starlette, Ajisai, Larets, LARES, BLITS and WESTPAC, and its observations cover a time span of 38 years ranging from February 16, 1979, to April 30, 2017. If multiple satellites with various altitudes and orbit inclinations are combined, correlations between estimated parameters are significantly reduced. This allows us (i) to investigate the ability of satellite constellations to reduce existing correlations and (ii) to estimate reliable parameters with higher precision compared to the standard 4-satellite constellation (LAGEOS-1/2, Etalon-1/2) which is currently used by the International Laser Ranging Service for the determination of the Terrestrial Reference Frame (TRF) and EOP products. In particular, the Stokes coefficients, EOP and TRF datum parameters (three translations, three rotations, one scale factor), which are highly correlated with satellite-specific orbit parameters, are improved. From our investigations, we found for an 11-satellite solution compared to the above-mentioned 4-satellite solution a decrease in the scatter of the TRF datum parameters of up to 37%, the transformation residuals are decreased by up to 22%, the scatter of the EOP is decreased by up to 22%, and their mean values are decreased by up to 84% w.r.t. the reference solutions. The largest improvement is obtained for the Stokes coefficients which significantly benefit from a combination of multiple satellites (inclinations and orbit altitudes). In total, single coefficients are improved by up to 93% and the overall improvement is up to 74%. Moreover, it could be clearly identified that Ajisai significantly disturbs the TRF solution due to an erroneous center-of-mass correction. We further quantify the impact of specific satellites on the determination of different geodetic parameters and finally evaluate the potential of the existing SLR-tracked spherical satellite constellation to support the goals of GGOS.

Keywords

GGOS TRF EOP Stokes coefficients SLR Multi-satellite LAGEOS Etalon Ajisai Stella Starlette BLITS Larets LARES 

Notes

Acknowledgements

The work described in this paper was carried out within the project “Consistent dynamic satellite reference frames and terrestrial geodetic datum parameters” funded by the German Research Foundation (DFG) via the DFG Research Unit 1503 “Space-Time Reference Systems for Monitoring Global Change and for Precise Navigation in Space.” The authors want to thank the Journal of Geodesy Editor-in-Chief Prof. Jürgen Kusche, the guest editor to this special issue Dr. Robert Heinkelmann and the three anonymous reviewers for their fruitful discussion of the manuscript.

References

  1. Abbondanza C, Chin TM, Gross RS, Heflin MB, Parker J, Soja BS, van Dam T, Wu X (2017) JTRF2014, the JPL Kalman filter, and smoother realization of the International Terrestrial Reference System. J Geophys Res Solid Earth 122:8474–8510.  https://doi.org/10.1002/2017JB014360 CrossRefGoogle Scholar
  2. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth 121:6109–6131.  https://doi.org/10.1002/2016JB013098 CrossRefGoogle Scholar
  3. Biancale R, Bode A (2006) Mean annual and seasonal atmospheric tide models based on 3-hourly and 6-hourly ECMWF surface pressure data. GeoForschungsZentrum (GFZ) Scientific Technical Report STR06/01.  https://doi.org/10.2312/GFZ.b103-06011
  4. Bloßfeld M (2015) The key role of Satellite Laser Ranging towards the integrated estimation of geometry, rotation and gravitational field of the Earth. Ph.D. thesis, Deutsche Geodätische Kommission (DGK) Reihe C, No. 745, Verlag der Bayerischen Akademie der Wissenschaften. ISBN: 978-3-7696-5157-7Google Scholar
  5. Bloßfeld M, Gerstl M, Hugentobler U, Angermann D, Müller H (2014) Systematic effects in LOD from SLR observations. Adv Space Res 54:1049–1063.  https://doi.org/10.1016/j.asr.2014.06.009 CrossRefGoogle Scholar
  6. Bloßfeld M, Müller H, Gerstl M, Stefka V, Bouman J, Göttl F, Horwath M (2015) Second-degree Stokes coefficients from multi-satellite SLR. J Geod 89(9):857–871.  https://doi.org/10.1007/s00190-015-0819-z CrossRefGoogle Scholar
  7. Bloßfeld M, Stefka V, Müller H, Gerstl M (2016) Satellite laser ranging—a tool to realize GGOS? In: Rizos C, Willis P (eds) IAG 150 years, IAG Symposia, vol 143, pp 540–547.  https://doi.org/10.1007/1345_2015_202
  8. Bowman BR, Tobiska WK, Marcos FA, Huang CY, Lin CS, Burke WJ (2008) A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. AIAA 2008-6438Google Scholar
  9. Cheng M, Ries JC, Tapley BD (2011) Variations of the Earth’s figure axis from satellite laser ranging and GRACE. J Geophys Res 116:B01409.  https://doi.org/10.1029/2010JB000850 Google Scholar
  10. Desai SD (2002) Observing the pole tide with satellite altimetry. J Geophys Res 107(C11):7-1–7-13.  https://doi.org/10.1029/2001JC001224 CrossRefGoogle Scholar
  11. Flechtner F, Sneeuw N, Schuh W-D (eds) (2014) Observation of the System Earth from Space-CHAMP, GRACE, GOCE and future missions. GEOTECHNOLOGIEN Science Report No. 20, Advanced Technologies in Earth Sciences. Springer, Berlin Heidelberg, 230 pp, Hardcover. ISBN: 978-3-642-32134-4.  https://doi.org/10.1007/978-3-642-32135-1
  12. Floberghagen R (2001) The far side. Lunar gravimetry into the third millennium. Ph.D. thesis, Technische Universiteit Delft, 283 pp. ISBN: 9090146938Google Scholar
  13. Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B, Steiger C, Piñeiro J, da Costa A (2011) Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. J Geod 85(11):749–758.  https://doi.org/10.1007/s00190-011-0498-3 CrossRefGoogle Scholar
  14. Folkner WF, Williams JG, Boggs DH (2008) Planetary ephemeris DE421 for Phoenix navigation. IOM 343R-08-002Google Scholar
  15. Förste C, Bruinsma S, Shako R, Marty JC, Flechtner F, Abrikosov O, Dahle C, Lemoine JM, Neumayer KH, Biancale R, Barthelmes F, König R, Balmino G (2011) EIGEN-6A new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophys Res Abstracts, 13, EGU2011-3242-2, EGU General AssemblyGoogle Scholar
  16. Gerstl M (1997) Parameterschätzung in DOGS-OC. In: DGFI Interner Bericht, MG/01/1996/DGFI, 2nd edn (in German) Google Scholar
  17. Knocke PC, Ries JC, Tapley BD (1988) Earth radiation pressure effects on satellites. AIAA/AAS Astrodynamics Conference, AIAA 88-4292, Minneapolis, MN.  https://doi.org/10.2514/6.1988-4292
  18. Konopliv AS, Asmar SW, Carranza E, Sjogren WL, Yuan D-N (2001) Recent gravity models as a result of the Lunar Prospector Mission. Icarus 150(1):1–18.  https://doi.org/10.1006/icar.2000.6573 CrossRefGoogle Scholar
  19. Luceri V, Pavlis EC, Pace B, König D, Kuzmicz-Cieslak M, Bianco G (2015) Overview of the ILRS contribution to the development of ITRF2013. In: REFAG 2014, van Dam T (ed), International Association of Geodesy Symposia, 146. Springer.  https://doi.org/10.1007/1345_2015_153
  20. Mayer-Gürr T, Behzadpour S, Ellmer M, Kvas A, Klinger B, Zehentner N (2016) ITSG-Grace2016—monthly and daily gravity field solutions from GRACE. GFZ Data Services.  https://doi.org/10.5880/icgem.2016.007
  21. Mendes VB, Pavlis EC (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Lett 31:L14602.  https://doi.org/10.1029/2004GL020308 CrossRefGoogle Scholar
  22. Otsubo T, Appleby GM (2003) System-dependent center-of-mass correction for spherical geodetic satellites. J Geophys Res 108(B4):2201.  https://doi.org/10.1029/2002JB002209 CrossRefGoogle Scholar
  23. Otsubo T, Sherwood RA, Appleby GM, Neubert R (2015) Center-of-mass corrections for sub-cm-precision laser-ranging targets: Starlette, Stella and LARES. J Geod 89(4):303–312.  https://doi.org/10.1007/s00190-014-0776-y CrossRefGoogle Scholar
  24. Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143.  https://doi.org/10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  25. Petit G, Luzum B (eds) IERS Conventions (2010), IERS Technical Note No. 36, Frankfurt am Main, Germany, Verlag des Bundesamts für Kartographie und GeodäsieGoogle Scholar
  26. Plag H-P, Pearlman M (2009) Global geodetic observing system-meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin Heidelberg, New York, Plag H-P, Pearlman M (eds), 332 p.  https://doi.org/10.1007/978-3-642-02687-4
  27. Ray RD, Ponte RM (2003) Barometric tides from ECMWF operational analyses. Ann Geophys 21:1897–1910.  https://doi.org/10.5194/angeo-21-1897-2003 CrossRefGoogle Scholar
  28. Reigber C, Lühr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30(2):129–134.  https://doi.org/10.1016/S0273-1177(02)00276-4 CrossRefGoogle Scholar
  29. Rudenko S, Dettmering D, Esselborn S, Schöne T, Förste C, Lemoine J-M, Ablain M, Alexandre D, Neumayer K-H (2014) Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends. Adv Space Res 54(1):92–118.  https://doi.org/10.1016/j.asr.2014.03.010 CrossRefGoogle Scholar
  30. Savcenko R, Bosch W (2012) EOT11A-Empirical Ocean Tide model from multi-mission satellite altimetry. Report No. 89, Deutsches Geodätisches Forschungsinstitut (DGFI), Munich, GermanyGoogle Scholar
  31. Seitz M, Bloßfeld M, Angermann D, Schmid R, Gerstl M, Seitz F (2016) The new DGFI-TUM realization of the ITRS: DTRF2014 (data). Deutsches Geodätisches Forschungsinstitut, Munich, Germany.  https://doi.org/10.1594/PANGAEA.864046 (Open Access)
  32. Sośnica K, Jäggi A, Thaller D, Beutler G, Dach R (2014) Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame. J Geod 88(8):789–804.  https://doi.org/10.1007/s00190-014-0722-z CrossRefGoogle Scholar
  33. Sośnica K, Jäggi A, Meyer U, Thaller D, Beutler G, Arnold D, Dach R (2015) Time variable Earths gravity field from SLR satellites. J Geod 89(10):945–960.  https://doi.org/10.1007/s00190-015-0825-1 CrossRefGoogle Scholar
  34. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607.  https://doi.org/10.1029/2004GL019920 CrossRefGoogle Scholar
  35. Zelensky NP, Lemoine FG, Chinn DS, Melachroinos S, Beckley BD, Wiser-Beall J, Bordyugov O (2014) Estimated SLR station position and network frame sensitivity to time-varying gravity. J Geod 88(6):517–537.  https://doi.org/10.1007/s00190-014-0701-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mathis Bloßfeld
    • 1
  • Sergei Rudenko
    • 1
  • Alexander Kehm
    • 1
  • Natalia Panafidina
    • 2
  • Horst Müller
    • 1
  • Detlef Angermann
    • 1
  • Urs Hugentobler
    • 2
  • Manuela Seitz
    • 1
  1. 1.Deutsches Geodätisches Forschungsinstitut at the Technische Universität München (DGFI-TUM)MunichGermany
  2. 2.Technische Universität München (TUM)MunichGermany

Personalised recommendations