Towards thermospheric density estimation from SLR observations of LEO satellites: a case study with ANDE-Pollux satellite

  • Francesca Panzetta
  • Mathis Bloßfeld
  • Eren Erdogan
  • Sergei Rudenko
  • Michael Schmidt
  • Horst Müller
Original Article


The present contribution investigates the possibility to obtain thermospheric neutral density estimates using satellite laser ranging (SLR) observations of low Earth orbiters (LEOs). This approach is based on the analysis of the satellite atmospheric drag, driven by the fact that the drag force is the largest non-gravitational perturbation acting on LEOs. Due to the uncertainty of current thermospheric models, it is the main error source in the LEO orbit determination process. Moreover, the drag is physically related to the thermospheric density distribution, the interaction of the satellite surface with the surrounding thermosphere and thermospheric winds. For this investigation, a spherical satellite called “Atmospheric Neutral Density Experiment-Pollux” (ANDE-P) developed by the Naval Research Laboratory (USA) is adopted as a case study. The satellite flew at the very low altitude of about 350 km. The most important perturbing acceleration at this altitude, the atmospheric drag, is easier to model for a spherical satellite like ANDE-P than for a satellite of complex geometry. A precise orbit determination of ANDE-P was performed with the DGFI Orbit and Geodetic parameter estimation Software (DOGS) over a period of 49 days (16 August 2009 until 3 October 2009) using SLR observations to this satellite and different thermospheric models. In total, we tested four thermospheric models, namely CIRA86, NRLMSISE00, JB2008 and DTM2013. Correspondingly, scale factors of these reference models are estimated with a 6-h resolution. The results confirm that the estimation of force model parameters from SLR measurements of the ANDE-P satellite is sensitive to differences in the density distributions provided by different models. As a consequence, information on the discrepancies between the various models and the true density can be derived from SLR measurements. Moreover, it is found that SLR observations to LEO satellites at very low altitudes are capable to estimate corrections to (scale factors of) the integrated thermospheric density if all other perturbing accelerations are modelled with sufficient accuracy. We derived time series of estimated scale factors of the thermospheric densities provided by the models and obtained the following mean values during the processed period of time at the ANDE-P altitude: \(0.65\pm 0.26\) for CIRA86, \(0.65\pm 0.25\) for NRLMSISE00, \(0.79\pm 0.24\) for DTM2013, and \(0.89\pm 0.27\) for JB2008. This suggests that all models overestimate the true thermospheric density along the ANDE-P trajectory during the processed period to a certain extent. The thermospheric densities need to be scaled downwards to fit ANDE-P SLR observations with JB2008 requiring the least amount of scaling.


Thermosphere SLR ANDE-P Atmospheric drag Balistic coefficient 



The work described in this paper was carried out within the project “Interactions of Low-orbiting Satellites with the Surrounding Ionosphere and Thermosphere (INSIGHT)” funded by the German Research Foundation (DFG) through the Special Priority Program 1788 “Dynamic Earth”. The authors also want to thank the editor-in-chief, Prof.  Jürgen Kusche, and the three anonymous reviewers for their comments and suggestions which clearly improved the quality and readability of the paper.


  1. Akmaev RA (2011) Whole atmosphere modeling: connecting terrestrial and space weather. Rev Geophys 49(4):4004. CrossRefGoogle Scholar
  2. Andrés JI, Noomen R, Bianco G, Currie DG, Otsubo T (2004) Spin axis behavior of the LAGEOS satellites. J Geophys Res 109:B06403. CrossRefGoogle Scholar
  3. Bloßfeld M (2015) The key role of Satellite Laser Ranging towards the integrated estimation of geometry, rotation and gravitational field of the Earth. PhD Dissertation, Technische Universität München (TUM), MunichGoogle Scholar
  4. Bowman BR (2004) The semiannual thermospheric density variation from 1970 to 2002 between 200–1000 km. Adv Astronaut Sci 119:04–174Google Scholar
  5. Bowman BR, Moe K (2005) Drag coefficient variability at 175-500 km from the orbit decay analyses of spheres. In: AAS/AIAA astrodynamics specialist conference, Lake Tahoe, CA, AAS 05-257Google Scholar
  6. Bowman BR, Tobiska WK, Marcos FA, Huang CY, Lin CS, Burke WJ (2008) A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. AIAA/AAS astrodynamics specialist conference and exhibit, AIAA 2008-6438Google Scholar
  7. Bruinsma SL, Biancale R (2003) Total densities derived from accelerometer data. J Spacecr Rockets 40(2):230–236. CrossRefGoogle Scholar
  8. Bruinsma SL, Sánchez-Ortiz N, Olmedo E, Guijarro N (2012) Evaluation of the DTM-2009 thermosphere model for benchmarking purposes. J Space Weather Space Clim 2:A04.
  9. Bruinsma SL (2015) The DTM-2013 thermosphere model. J Space Weather Space Climate 5:A1. CrossRefGoogle Scholar
  10. Cook GE (1965) Satellite drag coefficients. Planet Space Sci 13:929–946. CrossRefGoogle Scholar
  11. Doornbos E, Klinkrad H, Scharroo R, Visser PNAM (2007) Thermosphere density calibration in the orbit determination of ERS-2 and Envisat. In: Proceedings of envisat symposium, Montreux, ESA SP-636Google Scholar
  12. Doornbos E, Van Den Ijssel J, Lühr H, Förster M, Koppenwallner G (2010) Neutral density and crosswind determination from arbitrarily oriented multiaxis accelerometers on satellites. J Spacecr Rockets 47(4):580–589. CrossRefGoogle Scholar
  13. Doornbos E (2011) Thermospheric density and wind determination from satellite dynamics. PhD Dissertation, Technische Universiteit Delft, The Netherlands,
  14. Doornbos E, Bruinsma S, Fritsche B, Visser PNAM, Van Den IJssel J, Teixeira da Encarnação J, Kern M (2013) Air density and wind retrieval using GOCE data. In: Proceedings of the ESA living planet symposium, Edinburgh (United Kingdom), ESA SP-722Google Scholar
  15. Drob DP, Emmert JT, Meriwether JW, Makela JJ, Doornbos E, Conde M, Hernandez G, Noto J, Zawdie KA, McDonald SE, Huba JD, Klenzing JH (2015) An update to the Horizontal Wind Model (HWM): the quiet time thermosphere. Earth and Space Science 2:301–319. CrossRefGoogle Scholar
  16. Emmert JT (2015) Thermospheric mass density: a review. Adv Space Res 56(5):773–824CrossRefGoogle Scholar
  17. Flanagan HP (2015) Improved atmospheric density estimation for ANDE-2 satellites using drag coefficients obtained from gas-surface interaction equations. Master of Science Thesis, Aerospace Engineering, University of Kansas, USA,
  18. Folkner WF, Williams JG, Boggs DH (2008) Planetary ephemeris DE421 for Phoenix navigation, IOM 343R-08-002Google Scholar
  19. Förste C, Bruinsma S, Shako R, Marty JC, Flechtner F, Abrikosov O, Dahle C, Lemoine JM, Neumayer KH, Biancale R, Barthelmes F, König R, Balmino G (2011) EIGEN-6—a new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophysical Research Abstracts, 13, EGU2011-3242-2, EGU General Assembly, 2011Google Scholar
  20. Fritsche B, Ivanov M, Kashkovsky A, Koppenwallner G, Kudryavtsev A, Voskoboinikov U, Zhukova G (1998) Radiation pressure forces on complex spacecraft, final report, ESOC contract 11908/96/D/IM, HTG, Germany and ITAM, RussiaGoogle Scholar
  21. Gaposchkin EM, Coster AJ (1988) Analysis of satellite drag. Linc Lab J 1(2), 203–224 1(2):203–224Google Scholar
  22. Gerstl M (1997) Parameterschätzung in DOGS-OC, In: DGFI Interner Bericht, MG/01/1996/DGFI, 2nd edn (in German)Google Scholar
  23. Hedin AE, Spencer NW, Killeen TL (1988) Empirical global model of upper thermosphere winds based on Atmosphere and Dynamics Explorer satellite data. J Geophys Res 93:9959–9978. CrossRefGoogle Scholar
  24. Heelis RA (2011) Aspects of Coupling Processes in the Ionosphere and Thermosphere. In: Huba J, Schunk R, Khazanov G (eds) Modeling the Ionosphere-Thermosphere System. Wiley, ChichesterGoogle Scholar
  25. Jackson J (1924) Note on the numerical integration of d\(^2\)x/dt\(^2\)=f(x, t). Mon Not R Astron Soc 84:602–606CrossRefGoogle Scholar
  26. Jeon HS, Cho S, Kwak YS, Chung JK, Park JU, Lee DK, Kuzmicz-Cieslak M (2011) Mass density of the upper atmosphere derived from Starlette’s Precise Orbit Determination with Satellite Laser Ranging. Astrophys Space Sci 332(2):341–351. CrossRefGoogle Scholar
  27. King-Hele D (1987) Satellite orbits in an atmosphere: theory and applications. Blackie and Son Ltd., GlasgowGoogle Scholar
  28. Knocke PC, Ries JC, Tapley BD (1988) Earth radiation pressure effects on satellites. In: AIAA/AAS astrodynamics conference, AIAA 88–4292. Minneapolis, MN.
  29. Konopliv AS, Asmar SW, Carranza E, Sjogren WL, Yuan D-N (2001) Recent gravity models as a result of the Lunar Prospector Mission. Icarus 150(1):1–18CrossRefGoogle Scholar
  30. Lechtenberg TF, McLaughlin CA, Locke T, Krishna DM (2013) Thermospheric density variations: observability using precision satellite orbits and effects on orbit propagation. Space Weather 11:34–45. CrossRefGoogle Scholar
  31. Lechtenberg TF (2015) Density model corrections derived from orbit data to characterize upper atmospheric density variations. PhD Dissertation, Aerospace Engineering, University of Kansas, USA,
  32. Lee IT, Matsuo T, Richmond AD, Liu JY, Wang W, Lin CH, Anderson JL, Chen MQ (2012) Assimilation of FORMOSAT-3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering. J Geophys Res 117(A10):A10318. CrossRefGoogle Scholar
  33. Liu H, Lühr H, Henize V, Köhler W (2005) Global distribution of the thermospheric total mass density derived from CHAMP. J Geophys Res 110:A04301. Google Scholar
  34. Lühr H, Rentz S, Ritter P, Liu H, Häusler K (2007) Average thermospheric wind patterns over the polar regions, as observed by CHAMP. Ann Geophys 25:1093–1101. CrossRefGoogle Scholar
  35. Marcos FA (2003) New satellite drag modeling capabilities. In: 44th AIAA aerospace sciences meeting and exhibit.
  36. Marcos FA, Lai ST, Huang CY, Lin CS, Retterer J, Delay S, Sutton E (2010) Towards next level satellite drag modeling. In: AIAA atmospheric and space environments conference, Toronto, Ontario, Canada.
  37. Mehta PM, Walker A, McLaughlin CA, Koller J (2014) Comparing physical drag coefficients computed using different gas-surface interaction models. J Spacecr Rockets 51(3):873–883. CrossRefGoogle Scholar
  38. McLaughlin CA, Lechtenberg T, Fattig E, Krishna DM (2012) Estimating density using precision satellite orbits from multiple satellites. J Astronaut Sci 59(1):84–100. CrossRefGoogle Scholar
  39. Moe K, Moe MM (2005) Gas-surface interactions and satellite drag coefficients. Planet Space Sci 53:793–801. CrossRefGoogle Scholar
  40. Montenbruck O, Gill E, Montenbruck O, Gill E (2000) Satellite Orbits. Springer, Berlin. CrossRefGoogle Scholar
  41. Nicholas AC, Picone JM, Emmert J, DeYoung J, Healy L, Wasiczko L, Davis MA, Cox C (2007) Preliminary results from the atmospheric neutral density experiment risk reduction mission. In: Proceedings of the AAS/AIAA astrodynamics specialist conference, AAS 07-265.
  42. Nicholas AC, Finne T, Davis MA, Kessel R (2009) Atmospheric neutral density experiment (ANDE-2) flight hardware details, May 26, 2009.
  43. Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. CrossRefGoogle Scholar
  44. Petit G, Luzum B (2010) IERS conventions (2010), technical note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt, Germany. ISBN 3-89888-884-3Google Scholar
  45. Picone JM, Hedin AE, Drob DP, Aikin AC (2002) NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107(A12):1468. CrossRefGoogle Scholar
  46. Pilinski MD, Argrow BM, Palo SE (2010) Semi-empirical model for satellite energy-accommodation coefficients. J Spacecr Rockets 47(6):951–956. CrossRefGoogle Scholar
  47. Qian L, Burns AG, Emery BA, Foster B, Lu G, Maute A, Richmond AD, Roble RG, Solomon SC, Wang W (2014) The NCAR TIE-GCM: a community model of the coupled thermosphere/ionosphere system. In: Huba J, Schunk R, Khazanov G (eds) Modelling the ionosphere-thermosphere system. Wiley, ChichesterGoogle Scholar
  48. Qian L, Solomon SE (2012) Thermospheric density: an overview of temporal and spatial variations. Space Sci Rev 168(1):147–173. CrossRefGoogle Scholar
  49. Ray RD, Ponte RM (2003) Barometric tides from ECMWF operational analyses. Ann Geophys 21:1897–1910CrossRefGoogle Scholar
  50. Richmond AD, Ridley EC, Roble RG (1992) A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys Res Lett 19(6):601604. CrossRefGoogle Scholar
  51. Roble RG, Ridley EC, Richmond AD, Dickinson RE (1988) A coupled thermosphere/ionosphere general circulation model. Geophys Res Lett 15:1325–1328. CrossRefGoogle Scholar
  52. Savcenko R, Bosch W (2012) EOT11A—Empirical Ocean Tide model from multi-mission satellite altimetry, Report No. 89, Deutsches Geodätisches Forschungsinstitut (DGFI), München, GermanyGoogle Scholar
  53. Sentman LH (1961) Free molecule flow theory and its application to the determination of aerodynamic forces. Lockheed Missile and Space Co., LMSC-448514, AD265-409Google Scholar
  54. Solomon SC, Qian L, Roble RG (2015) New 3-D simulations of climate change in the thermosphere. J Geophys Res Space Phys 120(3):2183–2193.
  55. Sutton EK, Nerem RS, Forbes JM (2007) Density and winds in the thermosphere deduced from accelerometer data. J Spacecr Rockets 44(6):1210–1219. CrossRefGoogle Scholar
  56. Vallado DA (2007) Fundamentals of Astrodynamics and Applications, Third edn. Space Technology LibraryGoogle Scholar
  57. Walker A, Mehta P, Koller J (2014) Drag coefficient model using the Cercignani–Lampis–Lord gas-surface interaction model. J Spacecr Rockets 51(5):1544–1563. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Francesca Panzetta
    • 1
  • Mathis Bloßfeld
    • 1
  • Eren Erdogan
    • 1
  • Sergei Rudenko
    • 1
  • Michael Schmidt
    • 1
  • Horst Müller
    • 1
  1. 1.Deutsches Geodätisches Forschungsinstitut of the Technische Universität München (DGFI-TUM)MunichGermany

Personalised recommendations