Advertisement

Journal of Geodesy

, Volume 92, Issue 10, pp 1199–1217 | Cite as

Estimation of satellite position, clock and phase bias corrections

  • Patrick Henkel
  • Dimitrios Psychas
  • Christoph Günther
  • Urs Hugentobler
Original Article
  • 718 Downloads

Abstract

Precise point positioning with integer ambiguity resolution requires precise knowledge of satellite position, clock and phase bias corrections. In this paper, a method for the estimation of these parameters with a global network of reference stations is presented. The method processes uncombined and undifferenced measurements of an arbitrary number of frequencies such that the obtained satellite position, clock and bias corrections can be used for any type of differenced and/or combined measurements. We perform a clustering of reference stations. The clustering enables a common satellite visibility within each cluster and an efficient fixing of the double difference ambiguities within each cluster. Additionally, the double difference ambiguities between the reference stations of different clusters are fixed. We use an integer decorrelation for ambiguity fixing in dense global networks. The performance of the proposed method is analysed with both simulated Galileo measurements on E1 and E5a and real GPS measurements of the IGS network. We defined 16 clusters and obtained satellite position, clock and phase bias corrections with a precision of better than 2 cm.

Keywords

Network solution Satellite phase biases Satellite position and clock corrections Ambiguity fixing 

Notes

Acknowledgements

The authors would like to thank the International GNSS Service (IGS) [see Dow et al. (2009)] for providing the GNSS measurements and the orbital reference of this work.

References

  1. Baarda W (1973) S-transformations and criterion matrices. Publ Geodesy 5(1):18Google Scholar
  2. Blewitt G (1989) Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. J Geophys Res 94(B8):10187–10203CrossRefGoogle Scholar
  3. Brack A, Henkel P, Günther C (2014) Sequential best integer equivariant estimation for GNSS. Navigation 61(2):149–158CrossRefGoogle Scholar
  4. Brown RG, Hwang PYC (2012) Introduction to random signals and applied Kalman filtering, 4th edn. Wiley, New YorkGoogle Scholar
  5. Bryson AE, Henrikson LJ (1968) Estimation using sampled data containing sequentially correlated noise. J Spacecr Rockets 5(6):662–665CrossRefGoogle Scholar
  6. Collins P (2008) Isolating and estimating undifferenced GPS integer ambiguities. In: Proceedings of ION NTM, ION, San Diego, CA, USA, pp 720–732Google Scholar
  7. Collins P, Bisnath S, Lahaye F, Héroux P (2010) Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing. Navigation 57(2):123–135CrossRefGoogle Scholar
  8. Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS Software Version 5.0, User manual. Astronomical Institute, University of Bern, SwitzerlandGoogle Scholar
  9. Dong D, Bock Y (1989) Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94:3949–3966CrossRefGoogle Scholar
  10. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geodesy 83(3):191–198CrossRefGoogle Scholar
  11. Elsobeiey M, Al-Harbi S (2016) Performance of real-time precise point positioning using IGS real-time service. GPS Solut 20(3):565–571CrossRefGoogle Scholar
  12. Gabor M, Nerem R (2002) Satellite–satellite single-difference phase bias calibration as applied to ambiguity resolution. Navigation 49(4):223–242CrossRefGoogle Scholar
  13. Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geodesy 82:389–399CrossRefGoogle Scholar
  14. Geng J, Bock YD (2013) Triple-frequency GPS precise point positioning with rapid ambiguity resolution. J Geodesy 87:449–460CrossRefGoogle Scholar
  15. Hauschild A, Montenbruck O (2009) Kalman-filter-based GPS clock estimation for near real-time positioning. GPS Solut 13:173–182CrossRefGoogle Scholar
  16. Henkel P, Günther C (2010) Partial integer decorrelation: optimum trade-off between variance reduction and bias amplification. J Geodesy 84(1):51–63CrossRefGoogle Scholar
  17. Henkel P, Mittmann U, Iafrancesco M (2016) Real-time kinematic positioning with GPS and GLONASS. In: Proceedings of 24th European signal processing conference (EUSIPCO), IEEE, Budapest, Hungary, pp 1–5Google Scholar
  18. Kouba J, Héroux P (2001) GPS precise point positioning using IGS orbit products. GPS Solut 5:12–28CrossRefGoogle Scholar
  19. Laurichesse D, Mercier F (2007) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP. In: Proceedings of 20th ION GNSS, ION, Fort Worth, TX, USA, pp 839–848Google Scholar
  20. Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L (2009) Integer Ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and Satellite precise orbit determination. Navigation 56(2):135–149CrossRefGoogle Scholar
  21. Laurichesse D, Mercier F, Berthias JP (2010) Real-time PPP with undifferenced integer ambiguity resolution, experimental results. In: Proceedings of 23rd ION GNSS, ION, Portland, Oregon, USA, pp 2534–2544Google Scholar
  22. Lindlohr W, Wells D (1985) GPS design using undifferenced carrier beat phase observations. Manuscr Geod 10:255–295Google Scholar
  23. Montenbruck O, Steigenberger P, Prange L, Deng Z, Zhao Q, Perosanz F, Romero I, Noll C, Stürze A, Weber G, Schmid R, MacLeod K, Schaer S (2016) The multi-GNSS experiment (MGEX) of the international GNSS service (IGS)—achievements, prospects and challenges. Adv Space Res 59(7):1671–1697CrossRefGoogle Scholar
  24. Odijk D, Zhang B, Khodabandeh A, Odolinski R, Teunissen P (2016) On the estimability of parameters in undifferenced, uncombined GNSS network and PPP-RTK user models by means of S-system theory. J Geodesy 90:15–44CrossRefGoogle Scholar
  25. Seepersad G, Banville S, Collins P, Bisnath S, Lahaye F (2016) Integer satellite clock combination for precise point positioning with ambiguity resolution. In: Proceedings of 29th ION GNSS, ION, Portland, OR, USA, pp 2058–2068Google Scholar
  26. Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS ambiguity estimation. J Geodesy 70:65–82CrossRefGoogle Scholar
  27. Teunissen PJG (1998) Success probability of integer GPS ambiguity rounding and bootstrapping. J Geodesy 72:606–612CrossRefGoogle Scholar
  28. Wen Z, Henkel P, Günther C (2011) Reliable estimation of phase biases of GPS satellites with a local reference network. In: Proceedings of 53rd international IEEE symposium on ELMAR, IEEE, Zadar, Croatia, pp 321–324Google Scholar
  29. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102:5005–5017CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Patrick Henkel
    • 1
  • Dimitrios Psychas
    • 1
  • Christoph Günther
    • 1
    • 2
  • Urs Hugentobler
    • 1
  1. 1.Technische Universität MünchenMunichGermany
  2. 2.German Aerospace Center (DLR)OberpfaffenhofenGermany

Personalised recommendations