Comparison between geodetic and oceanographic approaches to estimate mean dynamic topography for vertical datum unification: evaluation at Australian tide gauges

  • M. S. Filmer
  • C. W. Hughes
  • P. L. Woodworth
  • W. E. Featherstone
  • R. J. Bingham
Original Article

Abstract

The direct method of vertical datum unification requires estimates of the ocean’s mean dynamic topography (MDT) at tide gauges, which can be sourced from either geodetic or oceanographic approaches. To assess the suitability of different types of MDT for this purpose, we evaluate 13 physics-based numerical ocean models and six MDTs computed from observed geodetic and/or ocean data at 32 tide gauges around the Australian coast. We focus on the viability of numerical ocean models for vertical datum unification, classifying the 13 ocean models used as either independent (do not contain assimilated geodetic data) or non-independent (do contain assimilated geodetic data). We find that the independent and non-independent ocean models deliver similar results. Maximum differences among ocean models and geodetic MDTs reach >150 mm at several Australian tide gauges and are considered anomalous at the 99% confidence level. These differences appear to be of geodetic origin, but without additional independent information, or formal error estimates for each model, some of these errors remain inseparable. Our results imply that some ocean models have standard deviations of differences with other MDTs (using geodetic and/or ocean observations) at Australian tide gauges, and with levelling between some Australian tide gauges, of \({\sim }\pm 50\,\hbox {mm}\). This indicates that they should be considered as an alternative to geodetic MDTs for the direct unification of vertical datums. They can also be used as diagnostics for errors in geodetic MDT in coastal zones, but the inseparability problem remains, where the error cannot be discriminated between the geoid model or altimeter-derived mean sea surface.

Keywords

Mean dynamic topography Vertical datum unification Mean sea surface Geoid Numerical ocean models 

Notes

Acknowledgements

Chris Hughes and Rory Bingham were funded by ESA via the Project ITT AO/1-8194/15/NL/FF/gp “GOCE\(++\) Dynamic Topography at the coast and tide gauge unification”. Part of this work was funded by UK Natural Environment Research Council National Capability funding. Thanks to Jack McCubbine for discussion on coastal geoid errors. We would like to thank the following agencies and organisations for allowing access to data: Geoscience Australia (GNSS at tide gauges available on request from Nick Brown Nicholas.Brown@ga.gov.au); PSMSL; CSIRO for CARS2009; AVISO; Technical University of Denmark (DTU) for DTU10MSS; Technical University of Munich for TUM2013; National Geospatial-Intelligence Agency (NGA) EGM Development Team for EGM2008; Scripps Institution of Oceanography (University of California) for V23.1 marine gravity error grid (data from SIO, NOAA and NGS) and the bathymetry data used in Fig. 1. Figures 123 45678910 and 11 were plotted using the Generic Mapping Tools (Wessel et al. 2013). We appreciate comments from Associate Editor Benoit Meyssignac, and three anonymous reviewers that have helped us to improve this manuscript.

References

  1. Altamimi Z, Collileux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res Solid Earth 112:B09401.  https://doi.org/10.1029/2007JB004949 CrossRefGoogle Scholar
  2. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85(8):457–473.  https://doi.org/10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  3. Amin M (1988) Spatial variations of mean sea level of the North Sea off the east coast of Britain. Cont Shelf Res 8:1087–1106.  https://doi.org/10.1016/0278-4343(88)90040-4 CrossRefGoogle Scholar
  4. Amin M (1993) Changing mean sea level and tidal constants on the west coast of Australia. Aust J Mar Freshw Res 44(6):911–925.  https://doi.org/10.1071/MF9930911 CrossRefGoogle Scholar
  5. Amjadiparvar B, Rangelova E, Sideris MG (2016) The GBVP approach for vertical datum unification: recent results in North America. J Geod 90:45–63.  https://doi.org/10.1007/s00190-015-0855-8 CrossRefGoogle Scholar
  6. Amos MJ, Featherstone WE (2009) Unification of New Zealand’s local vertical datums: iterative gravimetric quasigeoid computations. J Geod 83:57–68.  https://doi.org/10.1007/s00190-008-0232-y CrossRefGoogle Scholar
  7. Andersen OB (1999) Shallow water tides in the northwest European shelf region from TOPEX/POSEIDON altimetry. J Geophys Res 104(C4):7729–7741.  https://doi.org/10.1029/1998JC900112 CrossRefGoogle Scholar
  8. Andersen OB, Knudsen P (2009) DNSC08 mean sea surface and mean dynamic topography models. J Geophys Res Oceans 114:C11001.  https://doi.org/10.1029/2008JC005179 CrossRefGoogle Scholar
  9. Andersen OB, Knudsen P, Berry PAM (2010) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84(3):191–199.  https://doi.org/10.1007/s00190-009-0355-9 CrossRefGoogle Scholar
  10. Arabelos D, Tscherning CC (2001) Improvements in height datum transfer expected from the GOCE mission. J Geod 75(5–6):308–312.  https://doi.org/10.1007/s001900100187 CrossRefGoogle Scholar
  11. Ardalan AA, Safari A (2005) Global height datum unification: a new approach in gravity potential space. J Geod 79(9):512–523.  https://doi.org/10.1007/s00190-005-0001-0 CrossRefGoogle Scholar
  12. Balasubramania N (1994) Definition and realization of a global vertical datum. Report 427, The Ohio State University, ColumbusGoogle Scholar
  13. Bingham RJ, Hughes CW (2012) Local diagnostics to estimate density-induced sea level variations over topography and along coastlines. J Geophys Res Oceans 117:C01013.  https://doi.org/10.1029/2011JC007276 CrossRefGoogle Scholar
  14. Bingham RJ, Haines K, Hughes CW (2008) Calculating the ocean’s mean dynamic topography from a mean sea surface and a geoid. J Atmos Ocean Technol 25(10):1808–1822.  https://doi.org/10.1175/2008JTECHO568.1 CrossRefGoogle Scholar
  15. Bingham RJ, Haines K, Lea DJ (2014) How well can we measure the ocean’s mean dynamic topography from space? J Geophys Res Oceans 119(6):3336–3356.  https://doi.org/10.1002/2013JC009354 CrossRefGoogle Scholar
  16. Blaker AT, Hirschi JJ-M, McCarthy G, Sinha B, Taws S, Marsh R, Coward A, de Cuevas B (2014) Historical analogues of the recent extreme minima observed in the Atlantic meridional overturning circulation at \(26^{\circ }\text{ N }\). Clim Dyn 44(1–2):457–473.  https://doi.org/10.1007/s00382-014-2274-6 Google Scholar
  17. Bolkas D, Fotopoulos G, Sideris MG (2012) Referencing regional geoid-based vertical datums to national tide gauge networks. J Geod Sci 2(4):363–369.  https://doi.org/10.2478/v10156-011-0050-7 Google Scholar
  18. Bruinsma SL, Foerste C, Abrikosov O, Marty JC, Rio M-H, Mulet S, Bonvalot S (2013) The new ESA satellite-only gravity field model via the direct approach. Geophys Res Lett 40:3607–3612.  https://doi.org/10.1002/grl.50716 CrossRefGoogle Scholar
  19. Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017.  https://doi.org/10.1175/2007MWR1978.1 CrossRefGoogle Scholar
  20. Cartwright DE, Crease J (1963) A comparison of the geodetic reference levels of England and France by means of the sea surface. Proc R Soc Lon A 273:558–580.  https://doi.org/10.1098/rspa.1963.0109 CrossRefGoogle Scholar
  21. Chang YS, Zhang S, Rosati A, Delworth TL, Stern WF (2013) An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Clim Dyn 40(3–4):775–803.  https://doi.org/10.1007/s00382-012-1412-2 CrossRefGoogle Scholar
  22. Christie RR (1994) A new geodetic heighting strategy for Great Britain. Surv Rev 32(252):328–343.  https://doi.org/10.1179/sre.1994.32.252.328 CrossRefGoogle Scholar
  23. Claessens SJ (2012) Evaluation of gravity and altimetry data in Australian coastal regions. In: Kenyon S et al (eds) Geodesy for planet Earth, proceedings of the IAG symposium, vol 136, pp 435–442.  https://doi.org/10.1007/978-3-642-20338-1_52
  24. Coleman R, Rizos C, Masters EG, Hirsch B (1979) The investigation of the sea surface slope along the north eastern coast of Australia. Aust J Geod Photo Surv 31:686–699Google Scholar
  25. Colombo OL (1980) A world vertical network. Report 296, The Ohio State University, ColumbusGoogle Scholar
  26. Condie SA (2011) Modeling seasonal circulation, upwelling and tidal mixing in the Arafura and Timor Seas. Cont Shelf Res 31(14):1427–1436.  https://doi.org/10.1016/j.csr.2011.06.005 CrossRefGoogle Scholar
  27. Cummings JA, Smedstad OM (2013) Variational data assimilation for the global ocean. In: Park SK, Xu L (eds) Data assimilation for atmospheric, oceanic and hydrologic applications—II, pp 303–343.  https://doi.org/10.1007/978-3-642-35088-7_13
  28. Deng XL, Featherstone WE, Hwang C (2002) Estimation of contamination of ERS-2 and POSEIDON satellite radar altimetry close to the coasts of Australia. Mar Geod 25(4):249–271.  https://doi.org/10.1080/01490410290051572 CrossRefGoogle Scholar
  29. Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first Earth Explorer Core mission. In: Beutler G et al (eds) Earth gravity field from space–from sensors to earth sciences. Springer, Dordrecht, pp 419–432.  https://doi.org/10.1007/978-94-017-1333-7_36 CrossRefGoogle Scholar
  30. Dunn J, Ridgway KR (2002) Mapping ocean properties in regions of complex topography. Deep Sea Res 49(3):591–604.  https://doi.org/10.1016/S0967-0637(01)00069-3 CrossRefGoogle Scholar
  31. Ekman M (1989) Impacts of geodynamic phenomena on systems for height and gravity. Bull Géod 63(3):281–296.  https://doi.org/10.1007/BF02520477 CrossRefGoogle Scholar
  32. Featherstone WE, Filmer MS (2012) The north-south tilt in the Australian Height Datum is explained by the ocean’s mean dynamic topography. J Geophys Res 117:C08035.  https://doi.org/10.1029/2012JC007974 CrossRefGoogle Scholar
  33. Featherstone WE, Kirby JF, Hirt C, Filmer MS, Claessens SJ, Brown NJ, Hu G, Johnston GM (2011) The AUSGeoid09 model of the Australian Height Datum. J Geod 85(3):133–150.  https://doi.org/10.1007/s00190-010-0422-2 CrossRefGoogle Scholar
  34. Fecher T, Pail R, Gruber T (2015) Global gravity field modeling based on GOCE and complementary gravity data. Int J Appl Earth Obs Geoinf 35(A):120–127.  https://doi.org/10.1016/j.jag.2013.10.005 CrossRefGoogle Scholar
  35. Ferry N, Parent L, Garric G, Bricaud C, Testut C-E, Le Galloudec O, Lellouche J-M, Drevillon M, Greiner E, Barnier B, Molines J-M, Jourdain NC, Guinehut S, Cabanes C, Zawadzki L (2012) GLORYS2V1 global ocean reanalysis of the altimetric era (1992–2009) at meso-scale. Mercator Ocean Q Newsl 44:29–39Google Scholar
  36. Filmer MS (2014) Using models of the ocean’s mean dynamic topography to identify errors in coastal geodetic levelling. Mar Geod 37(1):47–64.  https://doi.org/10.1080/01490419.2013.868383 CrossRefGoogle Scholar
  37. Filmer MS, Featherstone WE (2009) Detecting spirit-levelling errors in the AHD: recent findings and some issues for any new Australian height datum. Aust J Earth Sci 56(4):559–569.  https://doi.org/10.1080/08120090902806305 CrossRefGoogle Scholar
  38. Filmer MS, Featherstone WE (2012) A re-evaluation of the offset in the Australian Height Datum between mainland Australia and Tasmania. Mar Geod 35(1):107–119.  https://doi.org/10.1080/01490419.2011.634961 CrossRefGoogle Scholar
  39. Filmer MS, Featherstone WE, Kuhn M (2010) The effect of EGM2008-based normal, normal-orthometric and Helmert orthometric height systems on the Australian levelling network. J Geod 84(8):501–513.  https://doi.org/10.1007/s00190-010-0388-0 CrossRefGoogle Scholar
  40. Filmer MS, Featherstone WE, Kuhn M (2014a) Erratum to: The effect of EGM2008-based normal, normal-orthometric and Helmert orthometric height systems on the Australian levelling network. J Geod 88(1):93.  https://doi.org/10.1007/s00190-013-0666-8 CrossRefGoogle Scholar
  41. Filmer MS, Featherstone WE, Claessens SJ (2014b) Variance component estimation uncertainty for unbalanced data: application to a continent-wide vertical datum. J Geod 88(11):1081–1093.  https://doi.org/10.1007/s00190-014-0744-6 CrossRefGoogle Scholar
  42. Forbes AMG, Church JA (1983) Circulation in the Gulf of Carpentaria II: residual currents and mean sea level. Aust J Mar Freshw Res 34(1):11–22.  https://doi.org/10.1071/MF9830011 CrossRefGoogle Scholar
  43. Forget G, Campin J-M, Heimbach P, Hill CN, Ponte RM, Wunsch C (2015) ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci Model Dev 8:3071–3104.  https://doi.org/10.5194/gmd-8-3071-2015 CrossRefGoogle Scholar
  44. Ganachaud A, Wunsch C, Kim M-C, Tapley B (1997) Combination of TOPEX/POSEIDON data with a hydrographic inversion for determination of the oceanic general circulation and its relation to geoid accuracy. Geophys J Int 128(3):708–722.  https://doi.org/10.1111/j.1365-246X.1997.tb05331.x CrossRefGoogle Scholar
  45. Gerlach C, Rummel R (2013) Global height system unification with GOCE: a simulation study on the indirect bias term in the GBVP approach. J Geod 87(1):57–67.  https://doi.org/10.1007/s00190-012-0579-y CrossRefGoogle Scholar
  46. Grombein T, Seitz K, Heck B (2017) On high-frequency topography-implied gravity signals for a height system unification using GOCE-based global geopotential models. Surv Geophys 38:443–477.  https://doi.org/10.1007/s10712-016-9400-4 CrossRefGoogle Scholar
  47. Gruber T, Gerlach C, Haagmans R (2012) Intercontinental height datum connection with GOCE and GPS-levelling data. J Geod Sci 2(4):270–280.  https://doi.org/10.2478/v10156-012-0001-y Google Scholar
  48. Hamon BV, Greig MA (1972) Mean sea level in relation to geodetic land leveling around Australia. J Geophys Res 77(36):7157–7162.  https://doi.org/10.1029/JC077i036p07157 CrossRefGoogle Scholar
  49. Higginson S, Thompson KR, Woodworth PL, Hughes CW (2015) The tilt of mean sea level along the east coast of North America. Geophys Res Lett 42(5):1471–1479.  https://doi.org/10.1002/2015GL063186 CrossRefGoogle Scholar
  50. Hipkin RG (2000) Modelling the geoid and sea-surface topography in coastal areas. Phys Chem Earth Part A 25(1):9–16.  https://doi.org/10.1016/S1464-1895(00)00003-X CrossRefGoogle Scholar
  51. Holgate SJ, Matthews A, Woodworth PL, Rickards LJ, Tamisiea ME, Bradshaw E, Foden PR, Gordon KM, Jerejeva S, Pugh J (2013) New data systems and products at the permanent service for mean sea level. J Coast Res 29(3):493–504.  https://doi.org/10.2112/JCOASTRES-D-12-00175.1 CrossRefGoogle Scholar
  52. Hu GR (2009) Analysis of regional GPS campaigns and their alignment to the International Terrestrial Reference Frame (ITRF). J Spat Sci 54(1):15–22.  https://doi.org/10.1080/14498596.2009.9635163 CrossRefGoogle Scholar
  53. Huang J (2017) Determining coastal mean dynamic topography by geodetic methods. Geophys Res Lett 44(21):11125–11128.  https://doi.org/10.1002/2017GL076020 CrossRefGoogle Scholar
  54. Hughes CW, Bingham RJ, Roussenov V, Williams J, Woodworth PL (2015) The effect of Mediterranean exchange flow on European time-mean sea level. Geophys Res Lett 42(2):466–474.  https://doi.org/10.1002/2014GL062654 CrossRefGoogle Scholar
  55. ICSM (2007) Standards and practices for control surveys V1.7. Inter-Governmental Committee on Surveying and Mapping. ICSM Publication No. 1Google Scholar
  56. Idris NH, Deng X, Andersen OB (2014) The importance of coastal altimetry retracking and detiding: a case study around the Great Barrier Reef. Australia. Int J Rem Sens 35(5):1729–1740.  https://doi.org/10.1080/01431161.2014.882032 CrossRefGoogle Scholar
  57. Idžanović M, Ophaug V, Andersen OB (2017) The coastal mean dynamic topography in Norway observed by CryoSat-2 and GOCE. Geophys Res Lett 44(11):5609–5617.  https://doi.org/10.1002/2017GL073777 CrossRefGoogle Scholar
  58. Jayne SR (2006) Circulation of the North Atlantic Ocean from altimetry and the Gravity Recovery and Climate Experiment geoid. J Geophys Res Oceans 111(C3):C03005.  https://doi.org/10.1029/2005JC003128 CrossRefGoogle Scholar
  59. Kistler R, Collins W, Saha S, White G, Woolen J, Kalnay E, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50 year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267. https://doi.org/10.1175/1520-0477(2001)082\({<}\)0247:TNNYRM\(>\)2.3.CO;2Google Scholar
  60. Knudsen P, Bingham RJ, Andersen OB, Rio M-H (2011) A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. J Geod 85(11):861–879.  https://doi.org/10.1007/s00190-011-0485-8 CrossRefGoogle Scholar
  61. Köhl A, Stammer D, Cornuelle B (2007) Interannual to decadal changes in the ECCO global synthesis. J Phys Oceanogr 37:313–337.  https://doi.org/10.1175/JPO3014.1 CrossRefGoogle Scholar
  62. Lin H, Thompson KR, Huang J, Véronneau M (2015) Tilt of mean sea level along the Pacific Coasts of North America and Japan. J Geophys Res Oceans 120(10):6815–6828.  https://doi.org/10.1002/2015JC010920 CrossRefGoogle Scholar
  63. Losch M, Sloyan SM, Schröter J, Sneeuw N (2002) Box inverse models, altimetry and the geoid: problems with the omission error. J Geophys Res Oceans 107(C7):3078.  https://doi.org/10.1029/2001JC000855 CrossRefGoogle Scholar
  64. Marshall J, Hill C, Perelman L, Adcroft A (1997a) Hydrostatic, quasi-hydrostatic, and ocean modeling. J Geophys Res Oceans 102(C3):5733–5752.  https://doi.org/10.1029/96JC02776 CrossRefGoogle Scholar
  65. Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997b) A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. J Geophys Res 102(C3):5753–5766.  https://doi.org/10.1029/96JC02775 CrossRefGoogle Scholar
  66. Maximenko NA, Niiler P, Rio M-H, Melnichenko O, Centurioni L, Chambers D, Zlotnicki V, Galepin B (2009) Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J Atmos Oceanic Technol 26:1910–1919.  https://doi.org/10.1175/2009JTECHO672.1 CrossRefGoogle Scholar
  67. Mazloff MR, Gille ST, Cornuelle B (2014) Improving the geoid: combining topography in the California coastal ocean. Geophys Res Lett 41(24):8944–8952.  https://doi.org/10.1002/2014GL062402 CrossRefGoogle Scholar
  68. McAdoo DC, Farrell SL, Laxon S, Ridout A, Zwally HJ, Yi D (2013) Gravity of the Arctic Ocean from satellite data with validations using airborne gravimetry: oceanographic implications. J Geophys Res Oceans 118(2):917–930.  https://doi.org/10.1002/jgrc.20080 CrossRefGoogle Scholar
  69. Menemenlis D, Wunsch C (1997) Linearization of an oceanic circulation model for data assimilation and climate studies. J Atmos Oceanic Technol 14(6):1420–1443. https://doi.org/10.1175/1520-0426(1997) 014\({<}\)1420:LOAOGC\(>\)2.0.CO;2Google Scholar
  70. Menemenlis D, Fukumori I, Lee T (2005) Using Green’s functions to calibrate an ocean general circulation model. Mon Weather Rev 133:1224–1240.  https://doi.org/10.1175/MWR2912.1 CrossRefGoogle Scholar
  71. Mitchell HL (1975) Sea-surface topography around Australia. Surv Geophys 2(1):117–129.  https://doi.org/10.1007/BF01447940 CrossRefGoogle Scholar
  72. Morgan P (1992) An analysis of the Australian Height Datum: 1971. Aust Surv 37(1):46–63.  https://doi.org/10.1080/00050326.1992.10438774 CrossRefGoogle Scholar
  73. Ophaug V, Breili K, Gerlach C (2015) A comparative assessment of coastal mean dynamic topography in Norway by geodetic and ocean approaches. J Geophys Res 120(12):7807–7826.  https://doi.org/10.1002/2015JC011145 CrossRefGoogle Scholar
  74. Pariwono JI, Bye JAT, Lennon GW (1986) Long period variations in sea level in Australasia. Geophys J R Astr Soc 87(1):43–54.  https://doi.org/10.1111/j.1365-246X.1986.tb04545.x CrossRefGoogle Scholar
  75. Pavlis NK, Holmes SA, Kenyon SC, Factor JF (2012) The development and evaluation of Earth Gravitational Model (EGM2008). J Geophys Res Solid Earth 117(B4):B04406.  https://doi.org/10.1029/2011JB008916 CrossRefGoogle Scholar
  76. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2013) Correction to “The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)”. J Geophys Res 118(B5):2633.  https://doi.org/10.1029/jgrb.50167 CrossRefGoogle Scholar
  77. Pavlis NK, Saleh J (2005) Error propagation with geographic specificity for very high degree geopotential models. In: Jekeli C et al (eds) Gravity, geoid and space missions, IAG Symposia, vol 129, pp 149–154.  https://doi.org/10.1007/3-540-26932-0_26
  78. Penna NT, Featherstone WE, Gazeaux J, Bingham RJ (2013) The apparent British sea slope is caused by systematic errors in the levelling based vertical datum. Geophys J Int 194(2):772–786.  https://doi.org/10.1093/gji/ggt161 CrossRefGoogle Scholar
  79. Petit G, Luzum B (eds) (2010) IERS conventions 2010 (IERS Technical Note No. 36). Frankfurt am Main, p 179Google Scholar
  80. Rapp RH (1994) Separation between reference surfaces of selected vertical datums. Bull Géod 69(1):26–31.  https://doi.org/10.1007/BF00807989 CrossRefGoogle Scholar
  81. Rapp RH, Balasubramania N (1992) A conceptual formulation of a world height system. Report 421, Department of Geodetic Science and Surveying, Ohio State UniversityGoogle Scholar
  82. Ridgway KR (2007) Long-term trend and decadal variability of the southward penetration of the East Australia Current. Geophys Res Lett 34(13):L13613.  https://doi.org/10.1029/2007GLO30393 Google Scholar
  83. Ridgway KR, Condie SA (2004) The 5,500-km long boundary flow off western and southern Australia. J Geophys Res Oceans 109(C4):C04017.  https://doi.org/10.1029/2003JC001921 CrossRefGoogle Scholar
  84. Ridgway KR, Dunn JR (2003) Mesoscale structure of the mean East Australian Current system and its relationship with topography. Prog Oceanogr 56(2):189–222.  https://doi.org/10.1016/S0079-6611(03)00004-1 CrossRefGoogle Scholar
  85. Ridgway KR, Godfrey JS (2015) The source of the Leeuwin Current seasonality. J Geophys Res 120(10):6843–6864.  https://doi.org/10.1002/2015JC011049 CrossRefGoogle Scholar
  86. Ridgway KR, Dunn JR, Wilkin JL (2002) Ocean interpolation by four-dimensional weighted least squares-application to the waters around Australasia. J Atmos Ocean Technol 19(9):1357–1375. https://doi.org/10.1175/1520-0426(2002) 019\({<}\)1357:OIBFDW\(>\)2.0.CO;2Google Scholar
  87. Rio M-H, Hernandez F (2004) A mean dynamic topography computed over the world ocean from altimetry, in-situ measurements and a geoid model. J Geophys Res Oceans 109(C12):C12032.  https://doi.org/10.1029/2003JC002226 CrossRefGoogle Scholar
  88. Rio M-H, Guinehut S, Larnicol G (2011) The New CNES-CLS09 global Mean Dynamic Topography computed from the combination of GRACE data, altimetry and in-situ measurements. J Geophys Res 116(C7):C07018.  https://doi.org/10.1029/2010JC006505 CrossRefGoogle Scholar
  89. Rio M-H, Mulet S, Picot N (2014) Beyond GOCE for the ocean circulation estimate: synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys Res Lett 41(24):8918–8925.  https://doi.org/10.1002/2014GL061773 CrossRefGoogle Scholar
  90. Roelse A Granger HW, Graham JW (1971, 2nd edn. 1975) The adjustment of the Australian levelling survey 1970–1971. Technical Report 12. Division of National Mapping, CanberraGoogle Scholar
  91. Rothacher M (2002) Estimation of station heights with GPS. In: Drewes H et al (eds) Vertical Reference Systems. Springer, Berlin, pp 81–90.  https://doi.org/10.1007/978-3-662-04683-8_17 CrossRefGoogle Scholar
  92. Rummel R (2001) Global unification of height systems and GOCE. In: Sideris MG (ed) Gravity, geoid and geodynamics 2000. Springer, Berlin, pp 13–20.  https://doi.org/10.1007/978-3-662-04827-6_3 CrossRefGoogle Scholar
  93. Rummel R, Ilk KH (1995) Height datum connection-the ocean part. Allg Vermess 8–9:321–330Google Scholar
  94. Rummel R, Teunissen P (1988) Height datum definition, height datum connection and the role of the geodetic boundary value problem. Bull Géod 62(4):477–498.  https://doi.org/10.1007/BF02520239 CrossRefGoogle Scholar
  95. Sánchez L, Čunderlík R, Dayoub N, Mikula K, Minarechová Z, Šíma Z, Vatrt V, Vojtíšková M (2016) A conventional value for the geoid reference potential W\(_{0}\). J Geod 90(9):815–835.  https://doi.org/10.1007/s00190-016-0913-x CrossRefGoogle Scholar
  96. Sandwell DT, Müller RD, Smith WHF, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67.  https://doi.org/10.1126/science.1258213 CrossRefGoogle Scholar
  97. Schaeffer P, Faugère Y, Legeais JF, Ollivier A, Guinle T, Picot N (2012) The CNES_CLS11 global mean sea surface computed from 16 years of satellite altimeter data. Mar Geod 35(1):3–19.  https://doi.org/10.1080/01490419.2012.718231 CrossRefGoogle Scholar
  98. Slobbe DC, Klees R (2014) The impact of the dynamic sea surface topography on the quasi-geoid in shallow coastal waters. J Geod 88(3):241–261.  https://doi.org/10.1007/s00190-013-0679-3 CrossRefGoogle Scholar
  99. Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277(5334):1957–1962.  https://doi.org/10.1126/science.277.5334.1956 CrossRefGoogle Scholar
  100. Smith WHF, Wessel P (1990) Gridding with continuous curvature splines in tension. Geophys 55(3):293–305.  https://doi.org/10.1190/1.1442837 CrossRefGoogle Scholar
  101. Soufflet Y, Marchesiello P, Lemarié F, Jouanno J, Capet X, Debreu L, Benshila R (2016) On effective resolution in ocean models. Ocean Modell 98:36–50.  https://doi.org/10.1016/j.ocemod.2015.12.004 CrossRefGoogle Scholar
  102. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607.  https://doi.org/10.1029/2004GL019920 CrossRefGoogle Scholar
  103. Teunissen PJG, Amiri-Simkooei A (2008) Least-squares variance component estimation. J Geod 82(2):65–82.  https://doi.org/10.1007/s00190-007-0157 CrossRefGoogle Scholar
  104. Tregoning P, Lambeck K, Ramillien G (2008) GRACE estimates of sea surface height anomalies in the Gulf of Carpentaria, Australia. Earth Plan Sci Lett 271(1–4):241–244.  https://doi.org/10.1016/j.epsl.2008.04.018 CrossRefGoogle Scholar
  105. Valdivieso M, Haines K, Zuo H, Lea D (2014) Freshwater and heat transports from global ocean synthesis. J Geophys Res 119(1):394–409.  https://doi.org/10.1002/2013JC009357 CrossRefGoogle Scholar
  106. Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) (2011) Coastal altimetry. Springer, Berlin, p 566.  https://doi.org/10.1007/978-3-642-12796-0 Google Scholar
  107. Vincenty T (1975) Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv Rev 23(176):88–93.  https://doi.org/10.1179/sre.1975.23.176.88 CrossRefGoogle Scholar
  108. Vinogradov SV, Ponte RM (2011) Low-frequency variability in coastal sea level from tide gauges and altimetry. J Geophys Res Oceans 116(C7):C07006.  https://doi.org/10.1029/2011JC007034 CrossRefGoogle Scholar
  109. Volkov DL, Larnicol G, Dorandeu J (2007) Improving the quality of satellite altimetry data over continental shelves. J Geophys Res Oceans 112(C6):C06020.  https://doi.org/10.1029/2006JC003765 CrossRefGoogle Scholar
  110. Vossepoel FC (2007) Uncertainties in the mean ocean dynamic topography before the launch of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE). J Geophys Res Oceans 112(C5):C05010.  https://doi.org/10.1029/2006JC003891 CrossRefGoogle Scholar
  111. Wessel P, Smith WHF, Scharroo R, Luis JF, Wobbe F (2013) Generic mapping tools: improved version released. EOS Trans AGU 94(45):409–410.  https://doi.org/10.1002/2013EO450001 CrossRefGoogle Scholar
  112. Williams RG, Roussenov V, Smith D, Lozier MS (2014) Decadal evolution of ocean thermal anomalies in the North Atlantic: the effects of Ekman, overturning, and horizontal transport. J Clim 47:698–719.  https://doi.org/10.1175/JCLI-D-12-00234.1 CrossRefGoogle Scholar
  113. Wolanski E, Lambrechts J, Thomas C, Deleersnijder E (2013) The net water circulation through Torres Strait. Cont Shelf Res 64:66–74.  https://doi.org/10.1016/j.csr.2013.05.013 CrossRefGoogle Scholar
  114. Woodworth PL (2012) A note on the nodal tide in sea level records. J Coastal Res 28(2):316–323.  https://doi.org/10.2112/JCOASTRES-D-11A-00023.1 CrossRefGoogle Scholar
  115. Woodworth PL, Hughes CW, Bingham RW, Gruber T (2012) Towards worldwide height system unification using ocean information. J Geod Sci 2(4):302–318.  https://doi.org/10.2478/v10156-012-004-8 Google Scholar
  116. Woodworth PL, Gravelle M, Marcos M, Wöppelmann G, Hughes CW (2015) The status of measurement of the Mediterranean mean dynamic topography by geodetic techniques. J Geod 89(8):811–827.  https://doi.org/10.1007/s00190-015-0817-1 CrossRefGoogle Scholar
  117. Wunsch C (1978) The North Atlantic general circulation west of \(50^{\circ }\text{ W }\) determined by inverse methods. Rev Geophys Space Phys 16(4):583–620.  https://doi.org/10.1029/RG016i004p00583 CrossRefGoogle Scholar
  118. Wunsch C, Gaposchkin EM (1980) On using satellite altimetry to determine the general circulation of the oceans with application to geoid improvement. Rev Geophys 18(4):25–745.  https://doi.org/10.1029/RG018i004p00725 CrossRefGoogle Scholar
  119. Wunsch C, Stammer D (1997) Atmospheric loading and the oceanic “inverted barometer” effect. Rev Geophys 35(1):79–107.  https://doi.org/10.1029/96RG03037 CrossRefGoogle Scholar
  120. Wunsch C, Stammer D (1998) Satellite altimetry, the marine geoid, and the oceanic general circulation. Ann Rev Earth Planet Sci 26:19–253.  https://doi.org/10.1146/annurev.earth.26.1.219 CrossRefGoogle Scholar
  121. Xu P (1992) A quality investigation of global vertical datum connection. Geophys J Int 110(2):361–370.  https://doi.org/10.1111/j.1365-246X.1992.tb00880.x CrossRefGoogle Scholar
  122. Zhang L, Li F, Chen W, Zhang C (2009) Height datum unification between Shenzhen and Hong Kong using the solution of the linearized fixed-gravimetric boundary value problem. J Geod 83:411–417.  https://doi.org/10.1007/s00190-008-0234-9 CrossRefGoogle Scholar
  123. Zilkoski DB, Richards JH, Young GM (1992) Results of the general adjustment of the North American Vertical Datum of 1988. Surv Land Inform Syst 52:133–149Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Earth and Planetary Sciences and The Institute for Geoscience ResearchCurtin UniversityPerthAustralia
  2. 2.School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
  3. 3.National Oceanography CentreLiverpoolUK
  4. 4.School of Geographical Sciences, Bristol Glaciology CentreUniversity of BristolBristolUK

Personalised recommendations