Advertisement

Journal of Geodesy

, Volume 92, Issue 9, pp 1047–1061 | Cite as

Consistent realization of Celestial and Terrestrial Reference Frames

  • Younghee KwakEmail author
  • Mathis Bloßfeld
  • Ralf Schmid
  • Detlef Angermann
  • Michael Gerstl
  • Manuela Seitz
Original Article

Abstract

The Celestial Reference System (CRS) is currently realized only by Very Long Baseline Interferometry (VLBI) because it is the space geodetic technique that enables observations in that frame. In contrast, the Terrestrial Reference System (TRS) is realized by means of the combination of four space geodetic techniques: Global Navigation Satellite System (GNSS), VLBI, Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite. The Earth orientation parameters (EOP) are the link between the two types of systems, CRS and TRS. The EOP series of the International Earth Rotation and Reference Systems Service were combined of specifically selected series from various analysis centers. Other EOP series were generated by a simultaneous estimation together with the TRF while the CRF was fixed. Those computation approaches entail inherent inconsistencies between TRF, EOP, and CRF, also because the input data sets are different. A combined normal equation (NEQ) system, which consists of all the parameters, i.e., TRF, EOP, and CRF, would overcome such an inconsistency. In this paper, we simultaneously estimate TRF, EOP, and CRF from an inter-technique combined NEQ using the latest GNSS, VLBI, and SLR data (2005–2015). The results show that the selection of local ties is most critical to the TRF. The combination of pole coordinates is beneficial for the CRF, whereas the combination of \(\varDelta \hbox {UT1}\) results in clear rotations of the estimated CRF. However, the standard deviations of the EOP and the CRF improve by the inter-technique combination which indicates the benefits of a common estimation of all parameters. It became evident that the common determination of TRF, EOP, and CRF systematically influences future ICRF computations at the level of several \(\upmu \)as. Moreover, the CRF is influenced by up to \(50~\upmu \)as if the station coordinates and EOP are dominated by the satellite techniques.

Keywords

Celestial Reference Frame Terrestrial Reference Frame ICRF ITRF Inter-technique combination VLBI SLR GNSS EOP 

Notes

Acknowledgements

We thank the three anonymous reviewers for their helpful comments and suggestions. This study was funded by the German Research Foundation (DFG) within the Research Unit “Space-Time Reference Systems for Monitoring Global Change and for Precise Navigation in Space” (FOR 1503). This study made use of GNSS analysis solutions provided by the Center for Orbit Determination in Europe (CODE; Steigenberger et al. 2014).

References

  1. Abbondanza C, Chin T, Gross R, Heflin M, Parker J, Soja B, van Dam T, Wu X (2017) JTRF2014, the JPL Kalman filter, and smoother realization of the International Terrestrial Reference System. J Geophys Res Solid Earth.  https://doi.org/10.1002/2017JB014360 Google Scholar
  2. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the International Terrestrial Reference Frame for earth since applications. J Geophys Res.  https://doi.org/10.1029/2001JB000561 Google Scholar
  3. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth 124:61096131.  https://doi.org/10.1002/2016JB013098 Google Scholar
  4. Angermann D, Drewes H, Krügel M, Meisel B, Gerstl M, Kelm R, Müller H, Seemüller W, Tesmer V (2004) ITRS combination center at DGFI: a Terrestrial Reference Frame Realization 2003. Deutsche Geodätische Kommission, Reihe B, MünchenGoogle Scholar
  5. Angermann D, Seitz M, Drewes H (2013) Global Terrestrial Reference Systems and their realizations. In: Xu G (ed) Sciences of geodesy II-innovations and future developments. Springer, Berlin, pp 97–132.  https://doi.org/10.1007/978-3-642-28000-9_3 CrossRefGoogle Scholar
  6. Arias EF, Charlot P, Feissel M, Lestrade J-F (1995) The extragalactic reference system of the International Earth Rotation Service, ICRS. Astron Astrophys 303:604–608Google Scholar
  7. Beasley AJ, Gordon D, Peck AB, Petrov L, MacMillan DS, Formalont EB, Ma C (2002) The VLBA calibrator survey-VCS1. Astrophys J Suppl Ser 141(1):13–21.  https://doi.org/10.1086/339806 CrossRefGoogle Scholar
  8. Bizouard C, Lambert S, Becker O, Richard J (2017) Combined solution C04 for Earth rotation parameters consistent with International Terrestrial Reference Frame 2014. http://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf. Accessed 06 Nov 2017
  9. Bloßfeld M. (2015) The key role of Satellite Laser Ranging towards the integrated estimation of geometry, rotation and gravitational field of the Earth. PhD thesis, Deutsche Geodätische Kommission (DGK) Reihe C, No. 745, Verlag der Bayerischen Akademie der Wissenschaften. ISBN:978-3-7696-5157-7Google Scholar
  10. Bloßfeld M, Angermann D, Seitz M (2017) DGFI-TUM analysis and scale investigations of the latest Terrestrial Reference Frame Realizations. In: IAG proceedings (submitted)Google Scholar
  11. Böckmann S, Artz T, Nothnagel A (2010) VLBI Terrestrial Reference Frame contributions to ITRF2008. J Geod 84(3):201–219.  https://doi.org/10.1007/s00190-009-0357-7 CrossRefGoogle Scholar
  12. Dach R, Lutz S, Walser P, Fridez P (2015) Bernese GNSS software, version 5.2. Astronomical Institute, University of Bern.  https://doi.org/10.7892/boris.72297
  13. Dick WR, Thaller D (2015) IERS annual report 2014. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  14. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198.  https://doi.org/10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  15. Fey AL, Gordon D, Jacobs CS (eds) (2009) The second realization of the International Celestial Reference Frame by very long baseline interferometry. IERS Technical Note, No. 35. Verlag des Bundesamtes fr Kartographie und Geodsie, Frankfurt am Main. http://www.iers.org/TN35/. ISBN:978-3-89888-918-6
  16. Fey AL, Gordon D, Jacobs CS, Ma C, Gaume RA, Arias EF, Bianco G, Boboltz DA, Böckmann S, Bolotin S, Charlot P, Collioud A, Engelhardt G, Gipson J, Gontier A-M, Heinkelmann R, Kurdubov S, Lambert S, Lytvyn S, MacMillan DS, Malkin Z, Nothnagel A, Ojha R, Skurikhina E, Sokolova J, Souchay J, Sovers OJ, Tesmer V, Titov O, Wang G, Zharov V (2015) The second realization of the International Celestial Reference Frame by very long baseline interferometry. Astron J 150(2):58.  https://doi.org/10.1088/0004-6256/150/2/58 CrossRefGoogle Scholar
  17. Gerstl M (1997) Parameterschätzung in DOGS-OC. Deutsches Geodätisches Forschungsinstitut, MG/01/1996/DGFIGoogle Scholar
  18. Gerstl M, Kelm R, Müller H, Ehrnsperger W (2000) DOGS-CS: Kombination und Lösung großer Gleichungssysteme. Interner Bericht Nr. MG/01/1995/DGFI, Deutsches Geodätisches Forschungsinstitut, MunichGoogle Scholar
  19. Gordon D (2014) Revisiting the VLBA calibrator surveys for ICRF3. In: Behrend D, Baver KD, Armstrong KL (eds) Proceedings of the IVS 2014 general meeting. Science Press, Beijing, pp 386–389Google Scholar
  20. Gordon D, Jacobs C, Beasley A, Peck A, Gaume R, Charlot P, Fey A, Ma C, Titov O, Boboltz D (2016) Second epoch VLBA calibrator survey observations: VCS-II. Astron J 151(6):154.  https://doi.org/10.3847/0004-6256/151/6/154 CrossRefGoogle Scholar
  21. IUGG (2011) Resolutions adopted by the Council at the XXV IUGG General Assembly, Melbourne, Australia. http://www.iugg.org/resolutions. Accessed 4 May 2016
  22. Lovell JEJ, McCallum JN, Reid PB, McCulloch PM, Baynes BE, Dickey JM, Shabala SS, Watson CS, Titov O, Ruddick R, Twilley R, Reynolds C, Tingay SJ, Shield P, Adada R, Ellingsen SP, Morgan JS, Bignall HE (2013) The AuScope geodetic VLBI array. J Geod 87(6):527–538.  https://doi.org/10.1007/s00190-013-0626-3 CrossRefGoogle Scholar
  23. Malkin Z, Jacobs CS, Arias F, Boboltz D, Boehm J, Bolotin S, Bourda G, Charlot P, de Witt A, Fey A, Gaume R, Gordon D, Heinkelmann R, Lambert S, Ma C, Nothnagel A, Seitz M, Skurikhina E, Souchay J, Titov O (2015) The ICRF-3: status, plans, and progress on the next generation International Celestial Reference Frame. In: Malkin Z, Capitaine N (eds) Proceedings of Journées 2014 “Systèmes de référence spatio-temporels. Pulkovo Observatory, Russia, pp 3–8Google Scholar
  24. Mignard F, Klioner S, Lindegren L, Bastian U, Bombrun A, Hernndez J, Hobbs D, Lammers U, Michalik D, Ramos-Lerate M, Biermann M, Butkevich A, Comoretto G, Joliet E, Holl B, Hutton A, Parsons P, Steidelmller H, Andrei A, Bourda G, Charlot P (2016) Gaia Data Release 1: reference frame and optical properties of ICRF sources. Astron Astrophys 595:A5.  https://doi.org/10.1051/0004-6361/201629534 CrossRefGoogle Scholar
  25. Pearlman MR, Degnan JJ, Bosworth JM (2002) The International Laser Ranging Service. Adv Space Res 30(2):135–143.  https://doi.org/10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  26. Petrov L, Kovalev YY, Fomalont EB, Gordon D (2008) The sixth VLBA calibrator survey: VCS6. Astron J 136(2):580–585.  https://doi.org/10.1088/0004-6256/136/2/580 CrossRefGoogle Scholar
  27. Petrov L, Gordon D, Gipson J, MacMillan D, Ma C, Fomalont E, Walker RC, Carabajal C (2009) Precise geodesy with the very long baseline array. J Geod 83(9):859–876.  https://doi.org/10.1007/s00190-009-0304-7 CrossRefGoogle Scholar
  28. Rothacher M, Beutler G, Bosch W, Donnellan A, Gross R, Hinderer J, Ma C, Pearlman M, Plag HP, Richter B, Ries J, Schuh H, Seitz F, Shum CK, Smith D, Thomas M, Velacognia E, Wahr J, Willis P, Woodworth P (2009) The future global geodetic observing system (GGOS). In: Plag HP, Pearlman M (eds) Global geodetic observing system. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-642-02687-4_9
  29. Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80.  https://doi.org/10.1016/j.jog.2012.07.007 CrossRefGoogle Scholar
  30. Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of the ITRS: DTRF2008. J Geod 86(12):1097–1123.  https://doi.org/10.1007/s00190-012-0567-2 CrossRefGoogle Scholar
  31. Seitz M, Steigenberger P, Artz T (2012) Consistent realization of ITRS and ICRS. In: Behrend D, Baver KD (eds) Proceedings of the IVS 2012 general meeting, NASA/CP-2012-217504, pp 314–318Google Scholar
  32. Seitz M, Steigenberger P, Artz T (2014) Consistent adjustment of combined Terrestrial and Celestial Reference Frames. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet. IAG symposia, vol 139. Springer, Berlin, pp 215–221.  https://doi.org/10.1007/978-3-642-37222-3_28 CrossRefGoogle Scholar
  33. Seitz M, Bloßfeld M, Angermann D, Schmid R, Gerstl M, Seitz F (2016) The new DGFI-TUM realization of the ITRS: DTRF2014 (data). Deutsches Geodätisches Forschungsinstitut, Munich.  https://doi.org/10.1594/PANGAEA.864046
  34. Steigenberger P, Lutz S, Dach R, Schaer S, Jäggi A (2014) CODE repro2 product series for the IGS. Astronomical Institute, University of Bern.  https://doi.org/10.7892/boris.75680
  35. Titov O, Tesmer V, Boehm J (2004) OCCAM v.6.0 software for VLBI data analysis. In: Vandenberg NR, Baver KD (eds) Proceedings of the IVS 2004 general meeting, NASA/CP-2004-212255, pp 267–271Google Scholar
  36. Willis P, Fagard H, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten M, Ries JC, Rothacher M, Soudarin L, Tavernier G, Valette JJ (2010) The International DORIS Service (IDS): toward maturity. Adv Space Res 45(12):1408–1420.  https://doi.org/10.1016/j.asr.2009.11.018 CrossRefGoogle Scholar
  37. Wu X, Abbondanza C, Altamimi Z, Chin TM, Collilieux X, Gross RS, Heflin MB, Jiang Y, Parker JW (2015) KALREFA Kalman filter and time series approach to the International Terrestrial Reference Frame realization. J Geophys Res Solid Earth 120:37753802.  https://doi.org/10.1002/2014JB011622 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Deutsches Geodätisches Forschungsinstitut at the Technische Universität München (DGFI-TUM)MunichGermany

Personalised recommendations