Journal of Geodesy

, Volume 92, Issue 9, pp 989–1001 | Cite as

Precise orbits of the Lunar Reconnaissance Orbiter from radiometric tracking data

  • Anno LöcherEmail author
  • Jürgen Kusche
Original Article


Since 2009, the Lunar Reconnaissance Orbiter (LRO) acquires images and altimetric profiles of the lunar surface. Assembling these data to maps and terrain models requires the precise knowledge of the spacecraft trajectory. In this contribution, we present 5 years of LRO orbits from radiometric data processed with a software tailored to this mission. The presented orbits are the first independent validation of the LRO science orbits from NASA and are available for public use. A key feature of our processing is the elaborate treatment of model and observation errors by empirical parameters and an adaptive data weighting by variance component estimation. The quality of the resulting orbits is assessed by analyzing overlapping arcs. For our solution based on arcs of 2.5 days, such analysis yields a mean error of 2.81 m in total position and 0.11 m in radial direction. It is shown that this result greatly benefits from the adaptive data weighting, reducing the error by 2.54 and 0.13 m, respectively. Unfortunately, the precision achieved varies strongly, dependent on the view onto the orbital ellipse which changes with the lunar cycle. To mitigate this dependency, the arc length was extended in steps up to 10.5 days, leading in the best case to a further improvement of 0.80 m.


Lunar Reconnaissance Orbiter Radiometric ranging Precise orbit determination 



This research was funded by the German Research Foundation (DFG) within the research unit FOR 1503 “Space-Time Reference Systems for Monitoring Global Change and for Precise Navigation in Space”. We thank three anonymous reviewers for their thoughtful and constructive comments.


  1. Bauer S, Hussmann H, Oberst J, Dirkx D, Mao D, Neumann G, Mazarico E, Torrence M, McGarry J, Smith D, Zuber M (2017) Analysis of one-way laser ranging data to LRO, time transfer and clock characterization. Icarus 283:38–54. CrossRefGoogle Scholar
  2. Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111:B02406. Google Scholar
  3. Chin G, Brylow S, Foote M, Garvin J, Kasper J, Keller J, Litvak M, Mitrofanov M, Paige D, Raney K, Robinson M, Sanin A, Smith D, Spence H, Spudis P, Stern S, Zuber M (2007) Lunar Reconnaissance Orbiter overview: the instrument suite and mission. Space Sci Rev 129:391–419. CrossRefGoogle Scholar
  4. Floberghagen R, Visser P, Weischede F (1999) Lunar albedo force modeling and its effect on low lunar orbit and gravity field determination. Adv Space Res 23(4):733–738. CrossRefGoogle Scholar
  5. Förstner W (1979) Ein Verfahren zur Schätzung von Varianz- und Kovarianzkomponenten. Allg Vermess 11–12:446–453Google Scholar
  6. Keller J, Petro N, Vondrak R (2016) The Lunar Reconnaissance Orbiter mission: six years of science and exploration at the Moon. Icarus 273:2–24. CrossRefGoogle Scholar
  7. Konopliv A, Park R, Yuan D, Asmar S, Watkins M, Williams J, Fahnestock E, Kruizinga G, Paik M, Strekalov D, Harvey N, Smith D, Zuber M (2014) High-resolution lunar gravity fields from the GRAIL primary and extended missions. Geophys Res Lett 41:1452–1458. CrossRefGoogle Scholar
  8. Lemoine F, Goossens S, Sabaka T, Nicholas J, Mazarico E, Rowlands D, Loomis B, Chinn D, Caprette D, Neumann G, Smith D, Zuber M (2013) High degree gravity models from GRAIL primary mission data. J Geophys Res Planets 118:1676–1698. CrossRefGoogle Scholar
  9. Löcher A, Hofmann F, Gläser P, Haase I, Müller J, Kusche J, Oberst J (2017) Towards improved lunar reference frames: LRO orbit determination. In: van Dam T (ed) REFAG 2014, International Association of Geodesy Symposia. Springer, Berlin, pp 201–207. Google Scholar
  10. Maier A, Baur O (2016) Orbit determination and gravity field recovery from Doppler tracking data to the Lunar Reconnaissance Orbiter. Planet Space Sci 122:94–100. CrossRefGoogle Scholar
  11. Mao D, McGarry J, Mazarico E, Neumann G, Sun X, Torrence M, Zagwodzki T, Rowlands D, Hoffman E, Horvath J, Golder J, Barker M, Smith D, Zuber M (2017) The laser ranging experiment of the Lunar Reconnaissance Orbiter: five years of operations and data analysis. Icarus 283:55–69. CrossRefGoogle Scholar
  12. Mayer-Gürr T (2008) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Dissertation, University of BonnGoogle Scholar
  13. Mazarico E, Rowlands D, Neumann G, Smith D, Torrence M, Lemoine F, Zuber M (2012) Orbit determination of the Lunar Reconnaissance Orbiter. J Geod 86(3):193–207.
  14. Mazarico E, Lemoine F, Goossens S, Sabaka T, Nicholas J, Rowlands D, Neumann G, Torrence M, Smith D, Zuber M (2013) Improved precision orbit determination of lunar orbiters from GRAIL-derived lunar gravity models. In: Proceedings of the 23rd AAS/AIAA Space Flight Mechanics Meeting, San Diego CA, pp 1125–1141Google Scholar
  15. Mazarico E, Barker M, Neumann G, Zuber M, Smith D (2014) Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter. Geophys Res Lett 41(7):2282–2288. CrossRefGoogle Scholar
  16. Mazarico E, Neumann G, Barker M, Goossens S, Smith D, Zuber M (2017) Orbit determination of the Lunar Reconnaissance Orbiter: status after seven years. Planet Space Sci.
  17. Nicholson A, Slojkowski S, Long A, (2010) NASA GSFC Lunar Reconnaissance Orbiter (LRO) orbit estimation and prediction. SpaceOps, Huntsville, Alabama.
  18. Petit G, Luzum B (2010) IERS Conventions. IERS Technical Note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  19. Robinson M, Brylow S, Tschimmel M, Humm D, Lawrence S, Thomas P, Denevi B, Bowman-Cisneros E, Zerr J, Ravine M, Caplinger M, Ghaemi F, Schaffner J, Malin M, Mahanti P, Bartels A, Anderson J, Tran T, Eliason E, McEwen A, Turtle E, Jolliff B, Hiesinger H (2010) Lunar Reconnaissance Orbiter Camera (LROC) instrument overview. Space Sci Rev 150:81–124. CrossRefGoogle Scholar
  20. Slojkowski S (2014) Lunar Reconnaissance Orbiter orbit determination accuracy analysis. In: 24th International Symposium on Space Flight Dynamics, Laurel, Maryland.
  21. Smith D, Zuber M, Lemoine F, Torrence M, Mazarico E (2008) Orbit determination of LRO at the Moon. In: 16th International Workshop on Laser Ranging, Poznan, PolandGoogle Scholar
  22. Smith D, Zuber M, Jackson G, Cavanaugh J, Neumann G, Riris H, Sun X, Zellar R, Coltharp C, Connelly J, Katz B, Kleyner I, Liiva P, Matuszeski A, Mazarico E, McGarry J, Novo-Gradac A, Ott M, Peters C, Ramos-Izquierdo L, Ramsey L, Rowlands D, Schmidt S, Scott V, Shaw G, Smith J, Swinski J, Torrence M, Unger G, Yu A, Zagwodzki T (2010) The Lunar Orbiter Laser Altimeter investigation on the Lunar Reconnaissance Orbiter Mission. Space Sci Rev 150:209–241. CrossRefGoogle Scholar
  23. Tooley C (2009) Lunar Reconnaissance Orbiter mission update. Wernher von Braun Memorial Symposium 2009, Huntsville, Alabama.
  24. Vondrak R, Keller J, Chin G, Garvin J (2010) Lunar Reconnaissance Orbiter (LRO): observations for lunar exploration and science. Space Sci Rev 150:7–22. CrossRefGoogle Scholar
  25. Williams J, Boggs D, Folkner W (2008) DE421 lunar orbit, physical librations, and surface coordinates. JPL Interoffice Memorandum 335-JW,DB,WF-20080314-001Google Scholar
  26. Zuber M, Smith D, Lehman D, Hoffman T, Asmar S, Watkins M (2013) Gravity Recovery and Interior Laboratory (GRAIL): mapping the lunar interior from crust to core. Space Sci Rev 178:3–24. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Geodäsie und GeoinformationUniversität BonnBonnGermany

Personalised recommendations