Co-location of space geodetic techniques carried out at the Geodetic Observatory Wettzell using a closure in time and a multi-technique reference target

  • J. Kodet
  • K. U. Schreiber
  • J. Eckl
  • C. Plötz
  • S. Mähler
  • T. Schüler
  • T. Klügel
  • S. Riepl
Original Article


The quality of the links between the different space geodetic techniques (VLBI, SLR, GNSS and DORIS) is still one of the major limiting factors for the realization of a unique global terrestrial reference frame that is accurate enough to allow the monitoring of the Earth system, i.e., of processes like sea level change, postglacial rebound and silent earthquakes. According to the specifications of the global geodetic observing system of the International Association of Geodesy, such a reference frame should be accurate to 1 mm over decades, with rates of change stable at the level of 0.1 mm/year. The deficiencies arise from inaccurate or incomplete local ties at many fundamental sites as well as from systematic instrumental biases in the individual space geodetic techniques. Frequently repeated surveys, the continuous monitoring of antenna heights and the geometrical mount stability (Lösler et al. in J Geod 90:467–486, 2016. have not provided evidence for insufficient antenna stability. Therefore, we have investigated variations in the respective system delays caused by electronic circuits, which is not adequately captured by the calibration process, either because of subtle differences in the circuitry between geodetic measurement and calibration, high temporal variability or because of lacking resolving bandwidth. The measured system delay variations in the electric chain of both VLBI- and SLR systems reach the order of 100 ps, which is equivalent to 3 cm of path length. Most of this variability is usually removed by the calibrations but by far not all. This paper focuses on the development of new technologies and procedures for co-located geodetic instrumentation in order to identify and remove systematic measurement biases within and between the individual measurement techniques. A closed-loop optical time and frequency distribution system and a common inter-technique reference target provide the possibility to remove variable system delays. The main motivation for the newly established central reference target, locked to the station clock, is the combination of all space geodetic instruments at a single reference point at the observatory. On top of that it provides the unique capability to perform a closure measurement based on the observation of time.


Space geodesy Local ties Clock synchronization System biases 



The authors acknowledge support from the Wettzell VLBI team, namely A. Neidhardt, G. Kronschnabl and W. Schwarz for the external VLBI system calibration. This work was supported by the Deutsche Forschungsgemeinschaft contract SCHR 645/6-5 within the Research Group FOR1503.

Author Contributions  JK did most of the experimental work and the major part of the modeling, KUS is the PI and provided the main concept. He wrote the major part of the document. JE and SR supported the project by providing the WLRS and SOS-W calibration, target measurements and system characterization. CP supported the VLBI measurements, and TS provided the GNSS analysis and evaluation of the VLBI sessions. SM and TK finally supported the document by designing and surveying the station fiducial.


  1. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: A new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res Solid Earth 121(8):6109–6131. Scholar
  2. Bloßfeld M (2015) The key role of satellite laser ranging towards the integrated estimation of geometry, rotation and gravitational field of the earth. PhD thesis, Technische Universität MünchenGoogle Scholar
  3. Bloßfeld M, Seitz M, Angermann D (2014) Non-linear station motions in epoch and multi-year reference frames. J Geod 88(1):45–63. Scholar
  4. Exertier P, Samain E, Courde C, Aimar M, Torre JM, Rovera GD, Abgrall M, Uhrich P, Sherwood R, Herold G, Schreiber U, Guillemot P (2016) Sub-ns time transfer consistency: a direct comparison between GPS CV and T2L2. Metrologia 53(6):1395.
  5. Glaser S, Fritsche M, Sośnica K, Rodríguez-Solano CJ, Wang K, Dach R, Hugentobler U, Rothacher M, Dietrich R (2015) Validation of components of local ties. In: REFAG 2014. Springer, pp 21–28.
  6. Hobiger T, Rieck R C Haas, Koyama Y (2015) Combining GPS and VLBI for inter-continental frequency transfer. Metrologia 52(2):251.
  7. Hrdina Z (1996) Statisticke zpracovani signalu, Vydavatelství CVUT, PrahaGoogle Scholar
  8. Kim J, Cox JA, Chen J, Kärtner FX (2008) Drift-free femtosecond timing synchronization of remote optical and microwave sources. Nat Photonics 2(12):733–736. Scholar
  9. Klügel T, Mähler S, Schade C (2011) Ground survey and local ties at the geodetic observatory wettzell. In: Proceedings of the 16th international workshop of laser rangingGoogle Scholar
  10. Kodet J, Schreiber U, Eckl J, Prochazka I, Panek P (2013) Local ties control in application of laser time transfer. In: 2013 joint European frequency and time forum international frequency control symposium (EFTF/IFC), pp 81–85.
  11. Kodet J, Pánek P, Procházka I (2016) Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability. Metrologia 53(1):18.
  12. Laas-Bourez M, Courde C, Samain E, Exertier P, Guillemot P, Torre JM, Martin N, Foussard C (2015) Accuracy validation of T2L2 time transfer in co-location. IEEE Trans Ultrason Ferroelectr Freq Control 62(2):255–265. Scholar
  13. Leick A, Rapoport L, Tatarnikov D (2015) GNSS positioning approaches, chapter 6. Wiley, pp 257–399.
  14. Lösler M, Haas R, Eschelbach C (2016) Terrestrial monitoring of a radio telescope reference point using comprehensive uncertainty budgeting. J Geod 90(5):467–486. Scholar
  15. Marini JW, Murray CW (1973) Correction of laser range tracking data for atmospheric refraction at elevation above 10 degrees. Internal reportGoogle Scholar
  16. Michalek V, Kodet J, Schreiber KU, Kronschnabl G, Plötz C, Prochazka I, Panek P (2013) VLBI receiver chain monitoring. In: 2013 joint European frequency and time forum international frequency control symposium (EFTF/IFC), pp 854–856.
  17. Rothacher M (2003) Towards a rigorous combination of space geodetic techniques. In: Richter B, Schwegmann W, Dick WR (eds) Proceedings of the IERS workshop on combination research and global geophysical fluids. IERS technical note, Verlag des Bundesamts für Kartographie und Geodäsie, 30, pp 7–18.
  18. Samain E, Exertier P, Courde C, Fridelance P, Guillemot P, Laas-Bourez M, Torre JM (2015) Time transfer by laser link: a complete analysis of the uncertainty budget. Metrologia 52(2):423.
  19. Schüler T, Kronschnabl G, Plötz C, Neidhardt A, Bertarini A, Bernhart S, la Porta L, Halsig S, Nothnagel A (2015) Initial results obtained with the first twin VLBI radio telescope at the geodetic observatory wettzell. Sensors 15(8):18767.
  20. Seitz M (2009) Kombination geodätischer raumbeobachtungsverfahren zur realisierung eines terrestrischen referenzsystems. DGK Reihe C C(630)Google Scholar
  21. Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of the ITRS: DTRF2008. J Geod 86(12):1097–1123. Scholar
  22. Thomas JB (1978) The tone generator and phase calibration in vlbi measurements. Technical report 42-44, JPLGoogle Scholar
  23. Wang K, Rothacher M (2013) Stochastic modeling of high-stability ground clocks in GPS analysis. J Geod 87(5):427–437. Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Forschungseinrichtung Satellitengeodäsie, Geodätisches Observatorium WettzellTechnische Universität MünchenMünchenGermany
  2. 2.Geodätisches Observatorium WettzellBundesamt für Kartographie und GeodäsieFrankfurt am MainGermany

Personalised recommendations