Advertisement

Journal of Geodesy

, Volume 92, Issue 8, pp 923–937 | Cite as

The New Zealand gravimetric quasigeoid model 2017 that incorporates nationwide airborne gravimetry

  • J. C. McCubbine
  • M. J. Amos
  • F. C. Tontini
  • E. Smith
  • R. Winefied
  • V. Stagpoole
  • W. E. Featherstone
Original Article

Abstract

A one arc-minute resolution gravimetric quasigeoid model has been computed for New Zealand, covering the region \(25^{\circ }\hbox {S}\)\(60^{\circ }\hbox {S}\) and \(160^{\circ }\hbox {E}\)\(170^{\circ }\hbox {W}\). It was calculated by Wong and Gore modified Stokes integration using the remove–compute–restore technique with the EIGEN-6C4 global gravity model as the reference field. The gridded gravity data used for the computation consisted of 40,677 land gravity observations, satellite altimetry-derived marine gravity anomalies, historical shipborne marine gravity observations and, importantly, approximately one million new airborne gravity observations. The airborne data were collected with the specific intention of reinforcing the shortcomings of the existing data in areas of rough topography inaccessible to land gravimetry and in coastal areas where shipborne gravimetry cannot be collected and altimeter-derived gravity anomalies are generally poor. The new quasigeoid has a nominal precision of \(\pm \,48\,\hbox {mm}\) on comparison with GPS-levelling data, which is approximately \(14\,\hbox {mm}\) less than its predecessor NZGeoid09.

Keywords

Airborne gravity Gravimetric quasigeoid New Zealand 

Notes

Acknowledgements

The project to recompute the NZ gravimetric quasigeoid was organised and funded by Land Information New Zealand. Scientific equipment was provided by GNS Science, and data processing/computational steps were overseen by staff at GNS Science and Victoria University of Wellington. Later stages of this work have been supported financially by the Cooperative Research Centre for Spatial Information, whose activities are funded by the Business Cooperative Research Centres Programme, and by Geoscience Australia. Maps and charts in this paper were produced using GMT (Wessel et al. 2013). We thank Scripps Institution of Oceanography (University of California), the US National Oceanographic and Atmospheric Administration and the use National Geospatial-Intelligence Agency for permission to use the marine gravity anomalies from Sandwell et al. (2014). Jack McCubbine publishes this paper with the permission of the CEO, Geoscience Australia. We would further like to thank Nicholas Brown at Geoscience Australia for his constructive critique of this manuscript. Finally, thanks go to the three anonymous reviewers and handling editor of this manuscript.

References

  1. Amos MJ (2007) Quasigeoid modelling in New Zealand to unify multiple local vertical datums. Ph.D. thesis, Curtin University of Technology, Perth, AustraliaGoogle Scholar
  2. Amos MJ, Featherstone WE (2004) A comparison of gridding techniques for terrestrial gravity observations in New Zealand. In: Proceedings of gravity, geoid and space missions symposium 2004, Porto, Portugal, August [CD-ROM]Google Scholar
  3. Amos MJ, Featherstone WE (2009) Unification of New Zealand’s local vertical datums: iterative gravimetric quasigeoid computations. J Geod 83(1):57–68.  https://doi.org/10.1007/s00190-008-0232-y CrossRefGoogle Scholar
  4. Amos MJ, Featherstone WE, Brett J (2005) Crossover adjustment of New Zealand marine gravity data, and comparisons with satellite altimetry and global geopotential models. In: Gravity, geoid and space missions, vol 129, pp 266–271. IAG symposia series, Springer, Berlin, Germany.  https://doi.org/10.1007/3-540-26932-0_46
  5. Bae TS, Lee J, Kwon JH, Hong C (2012) Update of the precision geoid determination in Korea. Geophys Prospect.  https://doi.org/10.1111/j.1365-2478.2011.01017.x Google Scholar
  6. Bastos L, Cunha S, Forsberg R, Olesen A, Gidskehaug A, Meyer U, Boebel T, Timmen L, Nesemann M, Hehl K (1997) An airborne geoid mapping system for regional sea-surface topography. In: Forsberg R, Feissl M (eds) Geodesy on the move. Springer, Heidelberg, pp 30–36.  https://doi.org/10.1007/978-3-642-72245-5_5 Google Scholar
  7. Bruinsma S, Foerste C, Abrikosov O, Marty JC, Rio MH, Mulet S, Bonvalot S (2013) The new ESA satellite-only gravity field model via the direct approach. Geophys Res Lett 40(14):3607–3612.  https://doi.org/10.1002/grl.50716 CrossRefGoogle Scholar
  8. Bucha B, Janák J (2014) A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders: efficient computation at irregular surfaces. Comput Geosci 66:219–227.  https://doi.org/10.1080/14498596.2011.580498 CrossRefGoogle Scholar
  9. Childers VA, Bell RE, Brozena JM (1999) Airborne gravimetry: an investigation of filtering. Geophysics 64(1):61–69.  https://doi.org/10.1190/1.1444530 CrossRefGoogle Scholar
  10. Claessens SJ, Hirt C, Amos MJ, Featherstone WE, Kirby JF (2011) The NZGEOID2009 model of New Zealand. Surv Rev 43(319):2–15.  https://doi.org/10.1179/003962610X12747001420780 CrossRefGoogle Scholar
  11. Featherstone WE (2003) Software for computing five existing types of deterministically modified integration kernel for gravimetric geoid determination. Comput Geosci 29(2):183–193.  https://doi.org/10.1016/S0098-3004(02)00074-2 CrossRefGoogle Scholar
  12. Featherstone WE, Kirby JF (2000) The reduction of aliasing in gravity anomalies and geoid heights using digital terrain data. Geophys J Int 141(1):204–212.  https://doi.org/10.1046/j.1365-246X.2000.00082.x CrossRefGoogle Scholar
  13. Featherstone WE, Evans JD, Olliver JG (1998) A Meissl-modified Vanicek and Kleus–Berg kernel to reduce the truncation error in gravimetric geoid computations. J Geod 72(3):154–160.  https://doi.org/10.1007/s001900050157 CrossRefGoogle Scholar
  14. Featherstone WE, Kirby JF, Hirt C, Filmer MS, Claessens SJ, Brown NJ, Hu G, Johnston GM (2011) The AUSGeoid09 model of the Australian height datum. J Geod 85(3):133–150.  https://doi.org/10.1007/s00190-010-0422-2 CrossRefGoogle Scholar
  15. Featherstone WE, McCubbine JC, Brown NJ, Claessens SJ, Filmer MS, Kirby JF (2017) The first Australian gravimetric quasigeoid model with location-specific uncertainty estimates. J Geod.  https://doi.org/10.1007/s00190-017-1053-7 Google Scholar
  16. Forsberg R (1987) A new covariance model for inertial gravimetry and gradiometry. J Geophys Res 92(B2):1305–1310.  https://doi.org/10.1029/JB092iB02p01305 CrossRefGoogle Scholar
  17. Forsberg R (2002) Downward continuation of airborne gravity—an Arctic case story. In: Proceedings of the international gravity and geoid commission meeting, ThessalonikiGoogle Scholar
  18. Forsberg R, Olesen A, Bastos L, Gidskehaug A, Meyer U, Timmen L (2000) Airborne geoid determination. Earth Planets Space 52(10):863–866.  https://doi.org/10.1186/BF03352296 CrossRefGoogle Scholar
  19. Forsberg R, Olesen A, Munkhtsetseg D, Amarzaya A (2007) Downward continuation and geoid determination in Mongolia form airborne and surface gravimetry and SRTM topography. In: Proceedings of the 1st international symposium of the international gravity field service gravityGoogle Scholar
  20. Forsberg R, Olesen AV, Einarsson I, Manandhar N, Shreshta K (2014) Geoid of Nepal from airborne gravity survey. Earth on the edge: science for a sustainable planet. Springer, Berlin, pp 521–527.  https://doi.org/10.1007/978-3-642-37222-3_69 CrossRefGoogle Scholar
  21. Förste Ch, Bruinsma S.L, Abrikosov O, Lemoine J-M, Schaller T, Gtze H-J, Ebbing J, Marty J-C, Flechtner F, Balmino G, Biancale R (2014) EIGEN-6C4 the latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. http://icgem.gfz-potsdam.de/ICGEM/documents/Foerste-et-al-EIGEN-6C4.pdf (last accessed 2015).  https://doi.org/10.5880/ICGEM.2015.1
  22. Haagmans RRN, de Min E, van Gelderen M (1993) Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes’ integral. Manuscr Geod 18(3):227–241Google Scholar
  23. Hájková J (2011) Local geoid determination based on airborne gravity data. Stud Geophys Geod 55(3):515–528.  https://doi.org/10.1007/s11200-011-0031-4 CrossRefGoogle Scholar
  24. Heiskanen WA, Moritz H (1967) Physical geodesy. W.H. Freeman and Company, San FranciscoGoogle Scholar
  25. Hirt C, Featherstone WE, Claessens SJ (2011) On the accurate numerical evaluation of geodetic convolution integrals. J Geod 85(8):519–538.  https://doi.org/10.1007/s00190-011-0451-5 CrossRefGoogle Scholar
  26. Hwang C, Hsiao YS, Shih HC, Yang M, Chen KH, Forsberg R, Olesen AV (2007) Geodetic and geophysical results from a Taiwan airborne gravity survey: data reduction and accuracy assessment. J Geophys Res Solid Earth 112(B4):2156–2202.  https://doi.org/10.1029/2005JB004220 CrossRefGoogle Scholar
  27. Jamil H, Kadir M, Forsberg R, Olesen A, Isa MN, Rasidi S, Mohamed A, Chihat Z, Nielsen E, Majid F, Talib K (2017) Airborne geoid mapping of land and sea areas of East Malaysia. J Geod Sci 7(1):84–93.  https://doi.org/10.1515/jogs-2017-0010 Google Scholar
  28. Jekeli C, Yang HJ, Kwon JH (2013) Geoid determination in South Korea from a combination of terrestrial and airborne gravity anomaly data. J Korean Soc Surv Geod Photogramm Cartogr 31(6–2):567–576CrossRefGoogle Scholar
  29. Kaula WM (1966) Theory of satellite geodesy. Blaisdell Publishing Company, WalthamGoogle Scholar
  30. Kearsley AHW, Forsberg R, Olesen A, Bastos L, Hehl K, Meyer U, Gidskehaug A (1998) Airborne gravimetry used in precise geoid computations by ring integration. J Geod 72(10):600–605.  https://doi.org/10.1007/s001900050198 CrossRefGoogle Scholar
  31. Li X, Wang YM (2011) Comparisons of geoid models over Alaska computed with different Stokes’ kernel modifications. J Geod Sci 1(2):136–142.  https://doi.org/10.2478/v10156-010-0016-1 Google Scholar
  32. Li X, Crowley JW, Holmes SA, Wang YM (2016) The contribution of the GRAV-D airborne gravity to geoid determination in the Great Lakes region. Geophys Res Lett 43(9):4358–4365.  https://doi.org/10.1002/2016GL068374 CrossRefGoogle Scholar
  33. McCubbine J (2016) Airborne gravity across New Zealand, for an improved vertical datum. Ph.D. thesis, Victoria University of Wellington, New ZealandGoogle Scholar
  34. McCubbine JC, Stagpoole V, Caratori Tontini F, Amos MJ, Smith E, Winefield R (2017) Gravity anomaly grids for the New Zealand region. N Z J Geol Geophys.  https://doi.org/10.1080/00288306.2017.1346692 Google Scholar
  35. Molodensky MS, Eremeev VF, Yurkina MI (1962) Methods for study of the external gravity field and figure of the Earth. Israeli Program for Scientific Translations, JerusalemGoogle Scholar
  36. Moritz H (1968) On the use of the terrain correction in solving Molodensky’s problem. Report 108, Department of Geodetic Science and Surveying. Ohio State University, ColumbusGoogle Scholar
  37. Moritz H (1972) Advanced least squares method. Report no. 75, Department of Geodetic Science, OSUGoogle Scholar
  38. Moritz H (1980a) Geodetic reference system 1980. Bull Geod 54(3):395–405.  https://doi.org/10.1007/BF02521480
  39. Moritz H (1980b) Advanced physical geodesy. Advances in planetary geology. Abacus Press, PrestonGoogle Scholar
  40. Novaìk P, Kern M, Schwarz KP, Sideris MG, Heck B, Ferguson S, Hammada Y, Wei M (2003) On geoid determination from airborne gravity. J Geod 76(9–10):510–522.  https://doi.org/10.1007/s00190-002-0284-3 Google Scholar
  41. Olesen AV (2003) Improved airborne scalar gravimetry for regional gravity field mapping and geoid determination. Ph.D. thesis, University of CopenhagenGoogle Scholar
  42. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res Solid Earth 117(B4):B04406.  https://doi.org/10.1029/2011JB008916 CrossRefGoogle Scholar
  43. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2013) Correction to: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res Solid Earth 118(5):2633.  https://doi.org/10.1029/jgrb.50167 CrossRefGoogle Scholar
  44. Reilly WI (1972) New Zealand gravity map series. NZ J Geol Geophys 15(1):3–15.  https://doi.org/10.1080/00288306.1972.10423942 CrossRefGoogle Scholar
  45. Sandwell DT, Miller RD, Smith WHF, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67.  https://doi.org/10.1126/science.1258213 CrossRefGoogle Scholar
  46. Scheinert M, Müller J, Dietrich R, Damaske D, Damm V (2008) Regional geoid determination in Antarctica utilizing airborne gravity and topography data. J Geod 82(7):403–414.  https://doi.org/10.1007/s00190-007-0189-2 CrossRefGoogle Scholar
  47. Schwarz KP, Li YC (1996) What can airborne gravimetry contribute to geoid determination? J Geophys Res Solid Earth 101(8):17873–17881.  https://doi.org/10.1029/96JB00819 CrossRefGoogle Scholar
  48. Sideris MG (1990) Rigorous gravimetric terrain modeling using Molodensky’s operator. Manuscr Geod 15:97–106Google Scholar
  49. Sjöberg LE, Eshagh M (2009) A geoid solution for airborne gravity data. Stud Geophys Geod 53(3):359–374.  https://doi.org/10.1007/s11200-009-0025-7 CrossRefGoogle Scholar
  50. Smith DA, Holmes SA, Li XP, Guillaume S, Wang YM, Bürki B, Roman DR, Damiani TM (2013) Confirming regional 1 cm differential geoid accuracy from airborne gravimetry: the Geoid Slope Validation Survey of 2011. J Geod 87(10–12):885–907.  https://doi.org/10.1007/s00190-013-0653-0 CrossRefGoogle Scholar
  51. Stagpoole V (2012) Description of the data in the GNS Science gravity database May 2012 GNS Science internal reportGoogle Scholar
  52. Vaníček P, Featherstone WE (1998) Performance of three types of Stokes’s kernel in the combined solution for the geoid. J Geod 72(12):684–697.  https://doi.org/10.1007/s001900050209 CrossRefGoogle Scholar
  53. Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (2011) Coastal altimetry. Springer, Berlin, p 566.  https://doi.org/10.1007/978-3-642-12796-0 CrossRefGoogle Scholar
  54. Wang YM (1993) Comments on the proper use of the terrain correction for the computation of height anomalies. Manuscr Geod 18(1):53–57Google Scholar
  55. Wang YM, Becker C, Mader G, Martin D, Li X, Jiang T, Breidenbach S, Geoghegan C, Winester D, Guillaume S, Bürki B (2017) The Geoid Slope Validation Survey 2014 and GRAV-D airborne gravity enhanced geoid comparison results in Iowa. J Geod 91(10):1261–1276.  https://doi.org/10.1007/s00190-017-1022-1 CrossRefGoogle Scholar
  56. Wessel P, Smith WHF, Scharroo R, Luis JF, Wobbe F (2013) Generic mapping tools: improved version released. EOS Trans AGU 94(45):409–410.  https://doi.org/10.1002/2013EO450001 CrossRefGoogle Scholar
  57. Wong L, Gore R (1969) Accuracy of geoid heights from modified Stokes kernels. Geophys J Int 18(1):81–91.  https://doi.org/10.1111/j.1365-246X.1969.tb00264.x CrossRefGoogle Scholar
  58. Woodward DJ, Carman AF (1984) Computer program to reduce precise gravity observations. Geophysics division technical note no 93, DSIR WellingtonGoogle Scholar
  59. Yang HJ (2013) Geoid determination based on a combination of terrestrial and airborne gravity data in South Korea, Report 507, Department of geodetic science, The Ohio State University, Columbus, USAGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Geodesy Section, Community Safety and Earth Monitoring DivisionGeoscience AustraliaCanberraAustralia
  2. 2.Land Information New ZealandWellingtonNew Zealand
  3. 3.GNS ScienceLower HuttNew Zealand
  4. 4.Victoria University of Wellington, KelburnWellingtonNew Zealand
  5. 5.Department of Spatial Sciences, The Institute for Geoscience ResearchCurtin University of TechnologyPerthAustralia

Personalised recommendations