Advertisement

Journal of Geodesy

, Volume 92, Issue 6, pp 691–706 | Cite as

Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle

  • David Roma-Dollase
  • Manuel Hernández-Pajares
  • Andrzej Krankowski
  • Kacper Kotulak
  • Reza Ghoddousi-Fard
  • Yunbin Yuan
  • Zishen Li
  • Hongping Zhang
  • Chuang Shi
  • Cheng Wang
  • Joachim Feltens
  • Panagiotis Vergados
  • Attila Komjathy
  • Stefan Schaer
  • Alberto García-Rigo
  • José M. Gómez-Cama
Original Article

Abstract

In the context of the International GNSS Service (IGS), several IGS Ionosphere Associated Analysis Centers have developed different techniques to provide global ionospheric maps (GIMs) of vertical total electron content (VTEC) since 1998. In this paper we present a comparison of the performances of all the GIMs created in the frame of IGS. Indeed we compare the classical ones (for the ionospheric analysis centers CODE, ESA/ESOC, JPL and UPC) with the new ones (NRCAN, CAS, WHU). To assess the quality of them in fair and completely independent ways, two assessment methods are used: a direct comparison to altimeter data (VTEC-altimeter) and to the difference of slant total electron content (STEC) observed in independent ground reference stations (dSTEC-GPS). The main conclusion of this study, performed during one solar cycle, is the consistency of the results between so many different GIM techniques and implementations.

Keywords

Global navigation satellite systems Ionosphere Global ionospheric maps Vertical total electron content Model validation 

Notes

Acknowledgements

This work has been possible thanks to the collaborative and friendly framework of the International GNSS Service, an organization providing first class open data and open products to the scientific and technical GNSS communities (see Dow et al. 2009). We appreciate the editorial inputs of Dr. René Zandbergen from ESA/ESOC.

References

  1. Abe O, Villamide XO, Paparini C, Radicella S, Nava B, Rodríguez-Bouza M (2017) Performance evaluation of gnss-tec estimation techniques at the grid point in middle and low latitudes during different geomagnetic conditions. J Geodesy 91(4):409–417CrossRefGoogle Scholar
  2. Azpilicueta F, Brunini C (2009) Analysis of the bias between TOPEX and GPS vTEC determinations. J Geodesy 83(2):121–127CrossRefGoogle Scholar
  3. Dach R, Schaer S, Arnold D, Orliac E, Prange L, Susnik A, Villiger A, Jäggi A (2016) CODE final product series for the IGS. http://www.aiub.unibe.ch/download/CODE,  https://doi.org/10.7892/boris.75876
  4. Dow JM, Neilan R, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geodesy 83(3–4):191–198CrossRefGoogle Scholar
  5. Feltens J (2007) Development of a new three-dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre. Space Weather 5(12):1–17CrossRefGoogle Scholar
  6. Feltens J, Angling M, Jackson-Booth N, Jakowski N, Hoque M, Hernández-Pajares M, Aragón-Àngel A, Orús R, Zandbergen R (2011) Comparative testing of four ionospheric models driven with GPS measurements. Radio Sci 46(6).  https://doi.org/10.1029/2010RS004584
  7. Georgiadou P (1994) Modelling the ionosphere for an active control network of GPS stations. Delft Geodetic Computing Centre, DelftGoogle Scholar
  8. Gerzen T, Feltens J, Jakowski N, Galkin I, Denton R, Reinisch B, Zandbergen R (2015) Validation of plasmasphere electron density reconstructions derived from data on board CHAMP by IMAGE/RPI data. Adv Space Res 55(1):170–183CrossRefGoogle Scholar
  9. Gerzen T, Feltens J, Jakowski N, Galkin I, Reinisch B, Zandbergen R (2016) Analysis of the IMAGE RPI electron density data and CHAMP plasmasphere electron density reconstructions with focus on plasmasphere modelling. Adv Space Res 58(6):856–866CrossRefGoogle Scholar
  10. Ghoddousi-Fard R (2014) GPS ionospheric mapping at Natural Resources Canada. In: IGS workshop, PasadenaGoogle Scholar
  11. Ghoddousi-Fard R, Héroux P, Danskin D, Boteler D (2011) Developing a GPS TEC mapping service over Canada. Space Weather 9:S06D11.  https://doi.org/10.1029/2010SW000621
  12. Ghoddousi-Fard R, Prikryl P, Lahaye F (2013) GPS phase difference variation statistics: a comparison between phase scintillation index and proxy indices. Adv Space Res 52(8):1397–1405CrossRefGoogle Scholar
  13. Hernández-Pajares M (2004) IGS ionosphere WG status report: performance of IGS ionosphere TEC maps-position paper. In: IGS workshop, BernGoogle Scholar
  14. Hernández-Pajares M, Juan J, Sanz J (1997) Neural network modeling of the ionospheric electron content at global scale using GPS data. Radio Sci 32(3):1081–1089CrossRefGoogle Scholar
  15. Hernández-Pajares M, Juan J, Sanz J, Sole J (1998) Global observation of the ionospheric electronic response to solar events using ground and LEO GPS data. J Geophys Res Space Phys 103(A9):20789–20796CrossRefGoogle Scholar
  16. Hernández-Pajares M, Juan J, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Sol Terr Phys 61(16):1237–1247CrossRefGoogle Scholar
  17. Hernández-Pajares M, Juan J, Sanz J (2000a) Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding. Geophys Res Lett 27(16):2473–2476CrossRefGoogle Scholar
  18. Hernández-Pajares M, Juan J, Sanz J, Colombo OL (2000b) Application of ionospheric tomography to real-time GPS carrier-phase ambiguities Resolution, at scales of 400–1000 km and with high geomagnetic activity. Geophys Res Lett 27(13):2009–2012CrossRefGoogle Scholar
  19. Hernández-Pajares M, Juan J, Sanz J, Orus R, García-Rigo A, Feltens J, Komjathy A, Schaer S, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geodesy 83(3–4):263–275CrossRefGoogle Scholar
  20. Hernández-Pajares M, Juan JM, Sanz J, Aragón-Àngel À, García-Rigo A, Salazar D, Escudero M (2011) The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J Geodesy 85(12):887–907CrossRefGoogle Scholar
  21. Hernández-Pajares M, Garcia-Fernández M, Rius A, Notarpietro R, Engeln Av, Olivares-Pulido G, Aragón-Ángel Á, García-Rigo A (2017a) Electron density extrapolation above F2 peak by the linear Vary-Chap model supporting new GNSS-LEO occultation missions. J Geophys Res Space Phys.  https://doi.org/10.1002/2017JA023876 Google Scholar
  22. Hernández-Pajares M, Roma-Dollase D, Krankowski A, García-Rigo A, Orús-Pérez R (2017b) Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J Geodesy. ( https://doi.org/10.1007/s00190-017-1032-z)
  23. Juan JM, Rius A, Hernández-Pajares M, Sanz J (1997) A two-layer model of the ionosphere using global positioning system data. Geophys Res Lett 24(4):393–396CrossRefGoogle Scholar
  24. Komjathy A, Wilson B, Runge T, Boulat B, Mannucci T, Pi X, Reyes M, Sparks L (2002) A new ionospheric model for wide area differential GPS: the multi-shell approach. In: Proceedings of the ION national technical meeting, San Diego, CA, January 28–30. The Institute of Navigation (ION)Google Scholar
  25. Komjathy A, Sparks L, Wilson BD, Mannucci AJ (2005) Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Sci 40(6):RS6006.  https://doi.org/10.1029/2005RS003279
  26. Li Z, Yuan Y, Wang N, Hernandez-Pajares M, Huo X (2015) SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. J Geodesy 89(4):331–345CrossRefGoogle Scholar
  27. Luo X, Xu H, Li Z, Zhang T, Gao J, Shen Z, Yang C, Wu Z (2017) Accuracy assessment of the global ionospheric model over the southern ocean based on dynamic observation. J Atmos Solar Terr Phys 154:127–131CrossRefGoogle Scholar
  28. Mannucci AJ, Wilson BD, Edwards CD (1993) A new method for monitoring the Earth’s ionospheric total electron content using the GPS global network. In: Proceedings of the 6th international technical meeting of the satellite Division of The Institute of Navigation (ION GPS 1993), Salt Lake City, UT, September 1993. The Institute of Navigation (ION), pp 1323–1332Google Scholar
  29. Mannucci A, Wilson B, Yuan D, Ho C, Lindqwister U, Runge T (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–582CrossRefGoogle Scholar
  30. Mannucci AJ, Iijima B, Sparks L, Pi X, Wilson B, Lindqwister U (1999) Assessment of global TEC mapping using a three-dimensional electron density model. J Atmos Solar Terr Phys 61(16):1227–1236CrossRefGoogle Scholar
  31. Orús R, Hernández-Pajares M, Juan J, Sanz J (2005) Improvement of global ionospheric VTEC maps by using kriging interpolation technique. J Atmos Solar Terr Phys 67(16):1598–1609CrossRefGoogle Scholar
  32. Rovira-Garcia A, Juan J, Sanz J, González-Casado G, Ibáñez D (2016) Accuracy of ionospheric models used in gnss and sbas: methodology and analysis. J Geodesy 90(3):229–240CrossRefGoogle Scholar
  33. Schaer S (1999) Mapping and predicting the earths ionosphere using the Global Positioning System, 1999. Ph.D. thesis, Ph. D. dissertation. University of Bern, BernGoogle Scholar
  34. Schaer S, Beutler G, Rothacher M, Springer TA (1996) Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE Analysis Center. In: Proceedings of the IGS AC workshop, Silver Spring, MD, USA, pp 181–192Google Scholar
  35. Schaer S, Gurtner W, Feltens J (1998) IONEX: the ionosphere map exchange format version 1. In: Proceedings of the IGS AC workshop, Darmstadt, Germany, vol 9. ftp://igs.org/pub/data/format/ionex1.pdf
  36. Vergados P, Komjathy A, Runge TF, Butala MD, Mannucci AJ (2016) Characterization of the impact of GLONASS observables on receiver bias estimation for ionospheric studies. Radio Sci 51(7):1010–1021CrossRefGoogle Scholar
  37. Yuan Y, Ou J (2002) Differential areas for differential stations (dads): a new method of establishing grid ionospheric model. Chin Sci Bull 47(12):1033–1036CrossRefGoogle Scholar
  38. Yuan Y, Ou J (2004) A generalized trigonometric series function model for determining ionospheric delay. Prog Nat Sci 14(11):1010–1014CrossRefGoogle Scholar
  39. Zhang H, Xu P, Han W, Ge M, Shi C (2013) Eliminating negative VTEC in global ionosphere maps using inequality-constrained least squares. Adv Space Res 51(6):988–1000CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Universitat Politècnica de Catalunya (UPC-IonSAT, IEEC)BarcelonaSpain
  2. 2.Department of Engineering: ElectronicsUniversitat de BarcelonaBarcelonaSpain
  3. 3.Space Radio-Diagnostics Research Center (SRRC/UWM)University of Warmia and Mazury in OlsztynOlsztynPoland
  4. 4.Canadian Geodetic SurveyNatural Resources CanadaOttawaCanada
  5. 5.Institude of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  6. 6.Academy of Opto-ElectronicsChinese Academy of SciencesBeijingChina
  7. 7.Wuhan UniversityWuhanChina
  8. 8.Navigation Support OfficeTelespazio VEGA Deutschland GmbH c/o European Space Agency/European Space Operations CentreDarmstadtGermany
  9. 9.Jet Propulsion LaboratoryNational Aeronautics and Space AdministrationWashingtonUSA
  10. 10.Center for Orbit Determination in EuropeBernSwitzerland

Personalised recommendations