Journal of Geodesy

, Volume 92, Issue 6, pp 637–658 | Cite as

On the impact of GNSS ambiguity resolution: geometry, ionosphere, time and biases

  • A. KhodabandehEmail author
  • P. J. G. Teunissen
Original Article


Integer ambiguity resolution (IAR) is the key to fast and precise GNSS positioning and navigation. Next to the positioning parameters, however, there are several other types of GNSS parameters that are of importance for a range of different applications like atmospheric sounding, instrumental calibrations or time transfer. As some of these parameters may still require pseudo-range data for their estimation, their response to IAR may differ significantly. To infer the impact of ambiguity resolution on the parameters, we show how the ambiguity-resolved double-differenced phase data propagate into the GNSS parameter solutions. For that purpose, we introduce a canonical decomposition of the GNSS network model that, through its decoupled and decorrelated nature, provides direct insight into which parameters, or functions thereof, gain from IAR and which do not. Next to this qualitative analysis, we present for the GNSS estimable parameters of geometry, ionosphere, timing and instrumental biases closed-form expressions of their IAR precision gains together with supporting numerical examples.


Global navigation satellite system (GNSS) Integer ambiguity resolution (IAR) Canonical differencing (CD) transformation UD-SD-DD decomposition Estimable parameters Precision gain numbers 



The network processing results in Figs. 46 and 7 were obtained by Curtin PPP-RTK Software, developed at the Curtin GNSS Research Centre. The second author is the recipient of an Australian Research Council (ARC) Federation Fellowship (project number FF0883188). All this support is gratefully acknowledged.


  1. Baarda W (1973) S-transformations and criterion matrices. Tech. rep., Netherlands Geodetic Commission, Publ. on Geodesy, New Series, vol 5(1), DelftGoogle Scholar
  2. Banville S (2016) GLONASS ionosphere-free ambiguity resolution for precise point positioning. J Geod 90(5):487–496CrossRefGoogle Scholar
  3. Collins P, Bisnath S, Lahaye F, Heroux P (2010) Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing. Navigation 57(2):123–135CrossRefGoogle Scholar
  4. Coster AJ, Gaposchkin EM, Thornton LE (1992) Real-time ionospheric monitoring system using the GPS. Navigation 39(2):191–204CrossRefGoogle Scholar
  5. de Jonge PJ (1998) A processing strategy for the application of the GPS in networks. Ph.D. thesis, Delft University of Technology, Publication on Geodesy, 46, Netherlands Geodetic Commission, DelftGoogle Scholar
  6. Delporte J, Mercier F, Laurichesse D, Galy O (2007) Fixing integer ambiguities for GPS carrier phase time transfer. In: Frequency control symposium, 2007 joint with the 21st European frequency and time forum. IEEE International, IEEE, pp 927–932Google Scholar
  7. Fliegel H, Beard R, Landis G, Stebbins S (1990) An alternative common view method for time transfer with GPS. Navigation 37(3):263–272CrossRefGoogle Scholar
  8. Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82(7):389–399CrossRefGoogle Scholar
  9. Geng J, Shi C, Ge M, Dodson AH, Lou Y, Zhao Q, Liu J (2012) Improving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioning. J Geod 86(8):579–589CrossRefGoogle Scholar
  10. Giorgi G, Teunissen PJG, Gourlay TP (2012) Instantaneous global navigation satellite system (GNSS)-based attitude determination for maritime applications. IEEE J Ocean Eng 37(3):348–362CrossRefGoogle Scholar
  11. Gunther C, Henkel P (2012) Integer ambiguity estimation for satellite navigation. IEEE Trans Signal Process 60(7):3387–3393CrossRefGoogle Scholar
  12. Han S (1997) Quality-control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning. J Geod 71(6):351–361CrossRefGoogle Scholar
  13. Hassibi A, Boyd S (1998) Integer parameter estimation in linear models with applications to GPS. IEEE Trans Signal Process 46(11):2938–2952CrossRefGoogle Scholar
  14. Hauschild A, Grillmayer G, Montenbruck O, Markgraf M, Vörsmann P (2008) GPS based attitude determination for the flying laptop satellite. Springer, Netherlands, pp 211–220Google Scholar
  15. Henderson HV, Pukelsheim F, Searle SR (1983) On the history of the kronecker product. Linear Multilinear Algebra 14(2):113–120CrossRefGoogle Scholar
  16. Jonkman N, Teunissen P, Joosten P, Odijk D (2000) GNSS long baseline ambiguity resolution: impact of a third navigation frequency. In: Geodesy Beyond 2000, IAG Symp 121, pp 349–354Google Scholar
  17. Khodabandeh A, Teunissen PJG (2015) An analytical study of PPP-RTK corrections: precision, correlation and user-impact. J Geod 89(11):1109–1132CrossRefGoogle Scholar
  18. Khodabandeh A, Teunissen PJG (2016) Array-aided multifrequency GNSS ionospheric sensing: estimability and precision analysis. IEEE Trans Geosci Remote Sens 54(10):5895–5913CrossRefGoogle Scholar
  19. Laurichesse D, Mercier F, Berthias J, Broca P, Cerri L, CNES F (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation 56(2):135–149CrossRefGoogle Scholar
  20. Li B, Verhagen S, Teunissen PJG (2014) Robustness of GNSS integer ambiguity resolution in the presence of atmospheric biases. GPS Solut 18(2):283–296CrossRefGoogle Scholar
  21. Liao X, Gao Y (2001) High-precision ionospheric TEC recovery using a regional-area GPS network. Navigation 48(2):101–111CrossRefGoogle Scholar
  22. Nadarajah N, Teunissen PJG, Raziq N (2013) Instantaneous GPS-Galileo attitude determination: single-frequency performance in satellite-deprived environments. IEEE Trans Veh Technol 62(7):2963–2976CrossRefGoogle Scholar
  23. Odijk D, Zhang B, Khodabandeh A, Odolinski R, Teunissen PJG (2015) On the estimability of parameters in undifferenced, uncombined GNSS network and PPP-RTK user models by means of S-system theory. J Geod 90(1):15–44CrossRefGoogle Scholar
  24. Odolinski R, Teunissen PJG (2017) Low-cost, high-precision, single-frequency GPS-BDS RTK positioning. GPS Solut.
  25. Petit G, Jiang Z, Uhrich P, Taris F (2000) Differential calibration of Ashtech Z12-T receivers for accurate time comparisons. In: Proceedings of 14th European frequency and time forum (Turin), pp 40–44Google Scholar
  26. Plumb J, Larson KM, White J, Powers E (2005) Absolute calibration of a geodetic time transfer system. IEEE Trans Ultrason Ferroelectr Freq Control 52(11):1904–1911CrossRefGoogle Scholar
  27. Schaer S (1999) Mapping and predicting the Earths ionosphere using the global positioning system. Ph.D. thesis, University of Bern, Bern, SwitzerlandGoogle Scholar
  28. Schaer S, Beutler G, Mervart L, Rothacher M, Wild U (1995) Global and regional ionosphere models using the GPS double difference phase observable. In: Proceedings of the IGS workshop on special topics on new directions, 77-92 Potsdam, Germany, May 15–27Google Scholar
  29. Teunissen PJG (1985) Generalized inverses, adjustment, the datum problem and S-transformations. In: Grafarend EW, Sanso F (eds) Optimization and design of geodetic networks. Springer, BerlinGoogle Scholar
  30. Teunissen PJG, Joosten P, Tiberius CCJM (1999) Geometry-free ambiguity success rates in case of partial fixing. In: Proceedings of ION-NTM, pp 25–27Google Scholar
  31. Teunissen PJG, Khodabandeh A (2014) Do GNSS parameters always benefit from integer ambiguity resolution? A PPP-RTK network scenario. In: Proceedings of ION GNSS+, Tampa, Florida, pp 590–600Google Scholar
  32. Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1–2):65–82CrossRefGoogle Scholar
  33. Teunissen PJG (1997) A canonical theory for short GPS baselines. Part I: the baseline precision. J Geod 71(6):320–336CrossRefGoogle Scholar
  34. Teunissen PJG, Kleusberg A (1998) GPS for geodesy, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  35. Teunissen PJG, de Jonge PJ, Tiberius CCJM (1997) Performance of the LAMBDA method for fast GPS ambiguity resolution. Navigation 44(3):373–383CrossRefGoogle Scholar
  36. Teunissen PJG, Odijk D, Zhang B (2010) PPP-RTK: results of CORS network-based PPP with integer ambiguity resolution. J Aeronaut Astronaut Aviat 42(4):223–229Google Scholar
  37. Tiberius CCJM, de Jonge PJ (1995) Fast positioning using the LAMBDA method. In: Proceedings of the 4th international symposium on differential satellite navigation systems, Bergen, Norway, 24–28 April, Citeseer, vol 30Google Scholar
  38. Xu P, Shi C, Liu J (2012) Integer estimation methods for GPS ambiguity resolution: an applications oriented review and improvement. Survey Rev 44(324):59–71CrossRefGoogle Scholar
  39. Zhang B, Teunissen PJG (2015) Characterization of multi-GNSS between-receiver differential code biases using zero and short baselines. Sci Bull 60(21):1840–1849CrossRefGoogle Scholar
  40. Zhang B, Teunissen PJG, Yuan Y (2017) On the short-term temporal variations of GNSS receiver differential phase biases. J Geod 91(5):563–572CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.GNSS Research CentreCurtin University of TechnologyPerthAustralia
  2. 2.Department of Geoscience and Remote SensingDelft University of TechnologyDelftThe Netherlands

Personalised recommendations