Advertisement

Journal of Geodesy

, Volume 92, Issue 6, pp 625–635 | Cite as

Future global SLR network evolution and its impact on the terrestrial reference frame

  • Alexander Kehm
  • Mathis Bloßfeld
  • Erricos C. Pavlis
  • Florian Seitz
Original Article

Abstract

Satellite laser ranging (SLR) is an important technique that contributes to the determination of terrestrial geodetic reference frames, especially to the realization of the origin and the scale of global networks. One of the major limiting factors of SLR-derived reference frame realizations is the datum accuracy which significantly suffers from the current global SLR station distribution. In this paper, the impact of a potential future development of the SLR network on the estimated datum parameters is investigated. The current status of the SLR network is compared to a simulated potential future network featuring additional stations improving the global network geometry. In addition, possible technical advancements resulting in a higher amount of observations are taken into account as well. As a result, we find that the network improvement causes a decrease in the scatter of the network translation parameters of up to 24%, and up to 20% for the scale, whereas the technological improvement causes a reduction in the scatter of up to 27% for the translations and up to 49% for the scale. The Earth orientation parameters benefit by up to 15% from both effects.

Keywords

Satellite laser ranging Network evolution Geodetic parameters Simulation study 

Notes

Acknowledgements

The authors want to thank the ILRS for providing the observations of the global geodetic SLR station network. Furthermore, the authors want to thank the German Research Foundation (DFG) for funding this work within the project “DIrect GEocentric Realisation of the American reference frame by combination of geodetic observation TechnIques” (DIGERATI) under grant No. SE 1916/5-1. E.C. Pavlis gratefully acknowledges the support of NASA grant NNX14AN50G.

References

  1. Ackerman S et al (2015) MODIS atmosphere L2 cloud mask product. NASA MODIS adaptive processing system, Goddard Space Flight Center, USA.  https://doi.org/10.5067/MODIS/MOD35_L2.006
  2. Appleby G, Rodríguez J, Altamimi Z (2016) Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993–2014. J Geodesy 90(12):1371–1388.  https://doi.org/10.1007/s00190-016-0929-2 CrossRefGoogle Scholar
  3. Bloßfeld M, Seitz M, Angermann D (2014) Non-linear station motions in epoch and multi-year reference frames. J Geodesy 88(1):45–63.  https://doi.org/10.1007/s00190-013-0668-6 CrossRefGoogle Scholar
  4. Bloßfeld M (2015) The key role of Satellite Laser Ranging towards the integrated estimation of geometry, rotation and gravitational field of the Earth. PhD thesis, Reihe C of the Deutsche Geodätische Kommission. ISBN: 978-3-7696-5157-7Google Scholar
  5. Bloßfeld M, Seitz M, Angermann D (2016) Epoch reference frames as short-term realizations of the ITRS–datum stability versus sampling. IAG symposia 143, Springer, Berlin, pp 26–32.  https://doi.org/10.1007/1345_2015_91
  6. Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimates. J Geophys Res.  https://doi.org/10.1029/2008.JB005727
  7. Coulot D, Berio P, Bonnefond P, Exertier P, Féraudy D, Laurain O, Deleflie F (2008) Satellite laser ranging biases and terrestrial reference frame scale factor. In: Sideris MG (ed) Observing our changing earth. International association of geodesy symposia, vol 133, pp 39–46.  https://doi.org/10.1007/978-3-540-85426-5_5
  8. Gerstl M (1997) Parameterschätzung in DOGS-OC. DGFI Interner Bericht, MG/01/1996/DGFU, 2nd edn (in German)Google Scholar
  9. Gerstl M, Müller H, Ehrensperger W (2008) DOGS-CS Kombination und Lösung großer Gleichungssysteme. In: DGFI Interner Bericht, MG/01/1995/DGFI (in German)Google Scholar
  10. Förste C, Bruinsma S, Shako R, Marty J-C, Flechtner F, Abrikosov O, Dahle C, Lemoine J-M, Neumayer H, Biancale R, Barthelmes F, König R, Balmino G (2011) EIGEN-6–a new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophysical Research Abstracts, vol 13, EGU2011-3242-2Google Scholar
  11. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5):394–415.  https://doi.org/10.1007/s10236-006-0086-x CrossRefGoogle Scholar
  12. National Research Council (2010) Precise geodetic infrastructure: national requirements for a shared resource. The National Academies Press, Washington.  https://doi.org/10.17226/12954
  13. Otsubo T, Matsuo K, Aoyama Y, Yamamoto K, Hobiger T, Kubo-oka T, Sekido M (2016) Effective expansion of satellite laser ranging network to improve global geodetic parameters. Earth Planets Space 68:65.  https://doi.org/10.1186/s40623-016-0447-8 CrossRefGoogle Scholar
  14. Pavlis EC (2007) The global SLR network and the origin and scale of the TRF in the GGOS era. In: John L (ed) 15th International laser workshop, pp. 159–166, Geosciences Australia, Canberra, https://cddis.nasa.gov/lw15
  15. Pavlis EC (2008) SLR and Global Reference Frames over the Next Decade. Invited talk at the NAS NRC panel on national requirements for precision geodetic infrastructure, June 11–13 (2008) University of Colorado at Boulder. Boulder, ColoradoGoogle Scholar
  16. Pavlis EC, Kuzmicz-Cieslak M (2009) SLR and the next generation global geodetic networks. In: Schillack S (ed) Proceedings of 16th international laser workshop, pp 183–189. Space Research Center, Polish Academy of Sciences, Warszawa, Poland. https://cddis.nasa.gov/lw16
  17. Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143.  https://doi.org/10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  18. Plag HP, Pearlman MR (2009) Global geodetic observing system. In: Plag HP, Pearlman MR (eds) Meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin.  https://doi.org/10.1007/978-3-642-02686-7
  19. Savcenko R, Bosch W (2010) EOT11a–empirical ocean tide model from multi-mission satellite altimetry. Deutsches Geodätisches Forschungsinstitut, Munich, Report No 89, hdl:10013/epic.43894.d001Google Scholar
  20. Schuh H, König R, Ampatzidis D, Glaser S, Flechtner F, Heinkelmann R, Nilsson TJ (2016) GGOS-SIM: simulation of the reference frame for the global geodetic observing system. In: IAG symposia 143. Springer, Berlin, pp 1–6.  https://doi.org/10.1007/1345_2015_217
  21. Sośnica K, Thaller D, Jäggi A, Dach R, Beutler G (2012) Sensitivity of LAGEOS orbits to global gravity field models. Artif Satell 47(2):47–65.  https://doi.org/10.2478/v10018-012-0013-y Google Scholar
  22. Sośnica K (2015) LAGEOS Sensitivity to ocean tides. Acta Geophys 63(4):1181–1203.  https://doi.org/10.1515/acgeo-2015-0032 CrossRefGoogle Scholar
  23. Tapley BD, Flechtner F, Bettadpur SV, Watkins MM (2013) The status and future prospect for GRACE after the first decade. Eos Trans., Fall Meet. Suppl., Abstract G22A-01Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Technische Universität München, Deutsches Geodätisches Forschungsinstitut (DGFI-TUM)MünchenGermany
  2. 2.Joint Center for Earth Systems Technology, University of Maryland Baltimore County (JCET-UMBC)BaltimoreUSA

Personalised recommendations