Advertisement

Journal of Geodesy

, Volume 92, Issue 6, pp 609–624 | Cite as

GNSS satellite transmit power and its impact on orbit determination

  • Peter Steigenberger
  • Steffen Thoelert
  • Oliver Montenbruck
Original Article

Abstract

Antenna thrust is a small acceleration acting on Global Navigation Satellite System satellites caused by the transmission of radio navigation signals. Knowledge about the transmit power and the mass of the satellites is required for the computation of this effect. The actual transmit power can be obtained from measurements with a high-gain antenna and knowledge about the properties of the transmit and receive antennas as well as losses along the propagation path. Transmit power measurements for different types of GPS, GLONASS, Galileo, and BeiDou-2 satellites were taken with a 30-m dish antenna of the German Aerospace Center (DLR) located at its ground station in Weilheim. For GPS, total L-band transmit power levels of 50–240 W were obtained, 20–135 W for GLONASS, 95–265 W for Galileo, and 130–185 W for BeiDou-2. The transmit power differs usually only slightly for individual spacecraft within one satellite block. An exception are the GLONASS-M satellites where six subgroups with different transmit power levels could be identified. Considering the antenna thrust in precise orbit determination of GNSS satellites decreases the orbital radius by 1–27 mm depending on the transmit power, the satellite mass, and the orbital period.

Keywords

Antenna thrust EIRP GPS GLONASS Galileo BeiDou 

Notes

Acknowledgements

We thank the European Space Agency for granting access to the NAPEOS software version 3.3.1, the International GNSS Service (IGS) and the International Laser Ranging Service (ILRS) for providing GNSS and SLR observation data.

References

  1. Agueda A, Zandbergen R (2004) NAPEOS mathematical models and algorithms. Technical report, NAPEOS-MM-01, iss. 3.0, 04/06/2004, ESA/ESOC, DarmstadtGoogle Scholar
  2. Ajioka J, Harry H (1970) Shaped beam antenna for Earth coverage from a stabilized satellite. IEEE Trans Antenna Propag 18(3):323–327.  https://doi.org/10.1109/TAP.1970.1139681 CrossRefGoogle Scholar
  3. Baars J, Genzel R, Pauliny-Thoth I, Witzel W (1977) The absolute spectrum of Cas A: an accurate flux density scale and a set of second calibrators. Astron Astrophys 61(1):99–106Google Scholar
  4. Barker BC, Betz JW, Clark JE, Correia JT, Gillis JT, Lazar S, Rehborn KA, Straton JR (2000) Overview of the GPS M code signal. In: ION NTM 2000. Anaheim, pp 542–549Google Scholar
  5. Betz J, Blanco M, Cahn C, Dafesh P, Hegarty C, Hudnut K, Kasemsri V, Keegan R, Kovach K, Lenahan L, Ma H, Rushanan J, Sklar D, Stansell T, Wang C, Yi S (2007) Enhancing the future of civil GPS: overview of the L1C signal. Inside GNSS 2(3):42–49Google Scholar
  6. Chang X, Mei X, Yang H (2015) Space service volume performance of BDS. In: 10th Meeting of the International Committee on Global Navigation Satellite Systems (ICG-10)Google Scholar
  7. COSPAS-SARSAT (2013) Description of the 406 MHz payloads used in the COSPAS-SARSAT MEOSAR system. Technical report, http://vnmcc.vishipel.vn/images/uploads/attach/T016.PDF
  8. Czopek F, Shollenberger S (1993) Description and performance of the GPS Block I and II L-band antenna and link budget. In: ION GPS 1993. Salt Lake City, pp 37–43Google Scholar
  9. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4):191–198.  https://doi.org/10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  10. Eanes RJ, Nerem RS, Abusali P, Bamford W, Key K, Ries JC, Schutz BE (1999) GLONASS orbit determination at the Center for Space Research. In: Slater J, Noll C, Gowey K (eds) International GLONASS Experiment IGEX-98 Workshop Proceedings, IGS. Jet Propulsion Laboratory, pp 209–217Google Scholar
  11. Edgar C, Price J, Reigh D (1998) GPS Block IIA and IIR received signal power measurements. In: ION NTM 1998. Long Beach, pp 401–411Google Scholar
  12. Edgar C, Goldstein DB, Bentley P (2002) Current constellation GPS satellite ground received signal power measurements. In: ION NTM 2002. San Diego, pp 948–954Google Scholar
  13. European GNSS Service Center (2016) Galileo IOV satellite metadata. European Global Navigation Satellite Systems Agency, https://www.gsc-europa.eu/support-to-developers/galileo-iov-satellite-metadata
  14. Falcone M (2016) Galileo system status. In: ION GNSS+ 2016. Portland, pp 2410–2430Google Scholar
  15. Fatkulin R, Kossenko V, Storozhev S, Zvonar V, Chebotarev V (2012) GLONASS space segment: satellite constellation, Glonass-M and Glonass-K spacecraft main features. ION GNSS 2012:3912–3930Google Scholar
  16. Feng W, Guo X, Qiu H, Zhang J, Dong K (2014) A study of analytical solar radiation pressure modeling for BeiDou navigation satellites based on raytracing method. In: Sun J, Jiao W, Wu H, Lu M (eds) China Satellite Navigation Conference (CSNC) 2014 Proceedings: volume II, Lecture Notes in Electrical Engineering. Springer, Berlin, pp 425–435.  https://doi.org/10.1007/978-3-642-54743-0_35
  17. Fisher SC, Ghasemi K (1999) GPS IIF—the next generation. Proc IEEE 87(1):24–47.  https://doi.org/10.1109/5.736340 CrossRefGoogle Scholar
  18. Ghasemi A, Abedi A, Ghasemi F (2012) Basic principles in radio wave propagation. In: Propagation engineering in wireless communications, chap 2. Springer, New York, pp 23–55.  https://doi.org/10.1007/978-1-4614-1077-5_2
  19. Hauschild A, Montenbruck O, Thoelert S, Erker S, Meurer M, Ashjaee J (2012) A multi-technique approach for characterizing the SVN49 signal anomaly, part 1: receiver tracking and IQ constellation. GPS Solut 16(1):19–28.  https://doi.org/10.1007/s10291-011-0203-2 CrossRefGoogle Scholar
  20. Hegarty C (2017) The Global Positioning System (GPS). In: Teunissen P, Montenbruck O (eds) Springer Handbook of Global Navigation Satellite Systems, chap 7. Springer, Berlin, pp 197–218.  https://doi.org/10.1007/978-3-319-42928-1_7
  21. Higbie P, Blocker N (1994) Detecting nuclear detonations with GPS. GPS World 5(2):48–50Google Scholar
  22. ICD-GPS-200C (2000) Interface conrol document ICD-GPS-200: Navstar GPS space segment/navigation user segment interfaces. Technical report, ARINC Research Corporation, http://www.gps.gov/technical/icwg/ICD-GPS-200C.pdf
  23. IGS (2011) Calculated and estimated GPS transmit power levels. http://acc.igs.org/orbits/thrust-power.txt
  24. Ilcev DS (2007) Cospas-Sarsat LEO and GEO: satellite distress and safety systems (SDSS). Int J Satell Commun Netw 25(6):559–573CrossRefGoogle Scholar
  25. Inaba N, Matsumoto A, Hase H, Kogure S, Sawabe M, Terada K (2009) Design concept of Quasi Zenith Satellite System. Acta Astronaut 65(7–8):1068–1075.  https://doi.org/10.1016/j.actaastro.2009.03.068 CrossRefGoogle Scholar
  26. Irsigler M, Hein GW, Schmitz-Peiffer A (2004) Use of C-band frequencies for satellite navigation: benefits and drawbacks. GPS Solut 8(3):119–139.  https://doi.org/10.1007/s10291-004-0098-2 CrossRefGoogle Scholar
  27. IS-GPS-200E (2010) Interface specification IS-GPS-200: Navstar GPS space segment/navigation user segment interfaces. Technical report, Global Positioning System Wing (GPSW) Systems Engineering and Integration. http://www.gps.gov/technical/icwg/IS-GPS-200E.pdf
  28. IS-GPS-200H (2014) Interface specification IS-GPS-200: Navstar GPS space segment/navigation user segment interfaces. Technical report, Global Positioning Systems Directorate Systems Engineering and Integration. http://www.gps.gov/technical/icwg/IS-GPS-200H.pdf
  29. IS-GPS-705A (2010) Navstar GPS space segment/user segment L5 interfaces. Technical report, Global Positioning System Wing (GPSW) Systems Engineering and Integration. http://www.gps.gov/technical/icwg/IS-GPS-705A.pdf
  30. IS-GPS-800A (2010) Navstar GPS space segment/user segment L1C interface. Technical report, Global Positioning System Wing (GPSW) Systems Engineering and Integration. http://www.gps.gov/technical/icwg/IS-GPS-800A.pdf
  31. IS-QZSS-L1S-001 (2017) Quasi-Zenith Satellite System Interface Specification Sub-meter Level Augmentation Service. Technical report, Cabinet Office. http://qzss.go.jp/en/technical/download/pdf/ps-is-qzss/is-qzss-pnt-001.pdf
  32. ITU-R (2005) Specific attenuation model for rain for use in prediction methods. Recommendation ITU-R P.838-3, Radiocommunication Sector of International Telecommunication Union (ITU-R)Google Scholar
  33. ITU-R (2013a) Attenuation by atmospheric gases. Recommendation ITU-R P.676-10, Radiocommunication Sector of International Telecommunication Union (ITU-R)Google Scholar
  34. ITU-R (2013b) Attenuation due to clouds and fog. Recommendation ITU-R P.840-6, Radiocommunication Sector of International Telecommunication Union (ITU-R)Google Scholar
  35. ITU-R (2013c) Reference standard atmospheres. Recommendation ITU-R P.676-10, Radiocommunication Sector of International Telecommunication Union (ITU-R)Google Scholar
  36. Kogure S, Ganeshan AS, Montenbruck O (2017) Regional systems. In: Teunissen P, Montenbruck O (eds) Springer Handbook of Global Navigation Satellite Systems, chap 11. Springer, Berlin. pp 305–337.  https://doi.org/10.1007/978-3-319-42928-1_11
  37. Kramer HJ (2002) Observation of the earth and its environment: survey of missions and sensors, 4th edn. Springer, Berlin.  https://doi.org/10.1007/978-3-642-56294-5 CrossRefGoogle Scholar
  38. Marquis W (2014) The GPS Block IIR/IIR-M antenna panel pattern: Appendix B - SV-specific patterns, data. Lockheed Martin Space Systems Company. http://www.lockheedmartin.com/content/dam/lockheed/data/space/photo/gps/gpspubs/Appendix
  39. Marquis W (2015) The GPS Block IIR/IIR-M antenna panel pattern. Lockheed Martin Space Systems Company. http://www.lockheedmartin.com/content/dam/lockheed/data/space/documents/gps/GPS-Block-IIR-and-IIR-M-Antenna-Panel-Pattern-Marquis-Aug2015-revised.pdf
  40. Marquis W (2016) The GPS Block IIR antenna panel pattern and its use on-orbit. In: ION GNSS+ 2016. Portland, pp 2896–2909Google Scholar
  41. Marquis WA, Reigh DL (2015) The GPS Block IIR and IIR-M broadcast L-band antenna panel: its pattern and performance. Navigation 62(4):329–347.  https://doi.org/10.1002/navi.123 CrossRefGoogle Scholar
  42. Melbourne WG (1985) The case for ranging in GPS based geodetic systems. In: Goad C (ed) Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, U.S. Department of Commerce, Rockville, pp 373–386Google Scholar
  43. Mendes VB, Pavlis EC (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Lett 31:L14602.  https://doi.org/10.1029/2004GL020308
  44. Milani A, Nobili AM, Farinella P (1987) Non-gravivational perturbations and satellite geodesy. Adam Hilger, BristolGoogle Scholar
  45. Mölders N, Kramm G (2014) Lectures in meteorology. Springer, BerlinCrossRefGoogle Scholar
  46. Montenbruck O, Schmid R, Mercier F, Steigenberger P, Noll C, Fatkulin R, Kogure S, Ganeshan A (2015) GNSS satellite geometry and attitude models. Adv Space Res 56(6):1015–1029.  https://doi.org/10.1016/j.asr.2015.06.019 CrossRefGoogle Scholar
  47. Montenbruck O, Steigenberger P, Hugentobler U (2015b) Enhanced solar radiation pressure modeling for Galileo satellites. J Geod 89(3):283–297.  https://doi.org/10.1007/s00190-014-0774-0 CrossRefGoogle Scholar
  48. Montenbruck O, Steigenberger P, Darugna F (2017) Semi-analytical solar radiation pressure modeling for QZS-1 orbit-normal and yaw-steering attitude. Adv Space Res 59(8):2088–2100.  https://doi.org/10.1016/j.asr.2017.01.036 CrossRefGoogle Scholar
  49. Montesano A, Montesano C, Caballero R, Naranjo M, Monjas F, Cuesta LE, Zorrilla P, Martínez L (2007) Galileo system navigation antenna for global positioning. In: Proceedings of EuCAP 2007Google Scholar
  50. Noda H, Kogure S, Kishimoto M, Soga H, Moriguchi T, Furubayashi T (2010) Development of the Quasi-Zenith Satellite System and high-accuracy positioning experiment system flight model. NEC Tech J 5(3):93–97Google Scholar
  51. NovAtel Inc (2006) GPS-704X antenna design and performance. Technical report. http://www.novatel.com/assets/Documents/Papers/GPS-704xWhitePaper.pdf
  52. Pearlman M, Degnan J, Bosworth J (2002) The International Laser Ranging Service. Adv Space Res 30(2):125–143.  https://doi.org/10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  53. Rebeyrol E, Macabiau C, Ries L, Bousquet M, Bouchere ML (2006) Interplex modulation for navigation systems at the L1 band. In: ION NTM 2006. Monterey, pp 100–111Google Scholar
  54. Rebischung P, Altamimi Z, Ray J, Garayt B (2016a) The IGS contribution to ITRF2014. J Geod 90(7):611–630.  https://doi.org/10.1007/s00190-016-0897-6 CrossRefGoogle Scholar
  55. Rebischung P, Schmid R, Herring T (2016b) Upcoming switch to IGS14/igs14.atx. IGSMAIL-7399. https://igscb.jpl.nasa.gov/pipermail/igsmail/2016/008589.html
  56. Revnivykh S, Bolkunov A, Serdyukov A, Montenbruck O (2017) GLONASS. In: Teunissen P, Montenbruck O (eds) Springer Handbook of Global Navigation Satellite Systems, chap 8. Springer, Berlin, pp 219–245.  https://doi.org/10.1007/978-3-319-42928-1_8
  57. Rodriguez-Solano C, Hugentobler U, Steigenberger P (2012) Impact of albedo radiation on GPS satellites. In: Geodesy for Planet Earth, Springer, International Association of Geodesy Symposia 136:113–119.  https://doi.org/10.1007/978-3-642-20338-1_14
  58. Schrank H (1983) Antenna designer’s notebook: polarization mismatch loss. IEEE Antennas Propag Soc Newslett 25(4):28–29.  https://doi.org/10.1109/MAP.1983.27697 CrossRefGoogle Scholar
  59. Seybold JS (2005) Introduction to HF propagation. Wiley, HobokenCrossRefGoogle Scholar
  60. Sosnica K, Thaller D, Dach R, Steigenberger P, Beutler G, Arnold D, Jäggi A (2015) Satellite laser ranging to GPS and GLONASS. J Geod 89(7):725–743.  https://doi.org/10.1007/s00190-015-0810-8 CrossRefGoogle Scholar
  61. Spence R (2010) Reference assumptions for GPS/Galileo compatibility analyses. NASA, WashingtonGoogle Scholar
  62. Spilker Jr JJ (1996) Tropospheric effects on GPS. In: Parkinson BW, Spilker Jr JJ (eds) Global Positioning System: theory and applications volume I, Progress in Astronautics and Aeronautics, chap 13, Vol 163, American Institute of Aeronautics and Astronautics, pp 517–546Google Scholar
  63. Steigenberger P, Montenbruck O (2016) Galileo status: orbits, clocks, and positioning. GPS Solut 21(2):319–331.  https://doi.org/10.1007/s10291-016-0566-5 CrossRefGoogle Scholar
  64. Steigenberger P, Montenbruck O, Hugentobler U (2015) GIOVE-B solar radiation pressure modeling for precise orbit determination. Adv Space Res 55(5):1422–1431.  https://doi.org/10.1016/j.asr.2014.12.009 CrossRefGoogle Scholar
  65. Steigenberger P, Hauschild A, Langley R (2017) US Air Force puts more power into GPS Block IIR-M C/A-code. GPS World 28(4):8–9Google Scholar
  66. Thoelert S, Erker S, Meurer M (2009) GNSS signal verification with a high gain antenna—calibration strategies and high quality signal assessment. In: ION ITM 2009. Portland, pp 2896–2909Google Scholar
  67. Thoelert S, Furthner J, Meurer M (2012) New birds in the sky—signal in space (SIS) analysis of new GNSS satellites. In: ION GNSS 2012. Nashville, pp 3613–3619Google Scholar
  68. Thoelert S, Meurer M, Erker S, Montenbruck O, Hauschild A, Fenton P (2012b) A multi-technique approach for characterizing the SVN49 signal anomaly, part 2: chip shape analysis. GPS Solut 16(1):29–39.  https://doi.org/10.1007/s10291-011-0204-1 CrossRefGoogle Scholar
  69. Thoelert S, Furthner J, Meurer M (2013) GNSS survey—signal quality assessment of the latest GNSS satellites. In: ION ITM 2013. San Diego, pp 608–615Google Scholar
  70. Thoelert S, Montenbruck O, Meurer M (2014) IRNSS-1A: signal and clock characterization of the Indian regional navigation system. GPS Solut 18(1):147–152.  https://doi.org/10.1007/s10291-013-0351-7
  71. Valle P, Netti A, Zolesi M, Mizzoni R, Bandinelli M, Guidi R (2006) Efficient dual-band planar array suitable to GALILEO. In: Proceedings First European Conference on Antennas and Propagation (EuCAP 2006).  https://doi.org/10.1109/EUCAP.2006.4584868
  72. Visser HJ (2012) Antenna theory and applications. Wiley, HobokenCrossRefGoogle Scholar
  73. Wu A (2002) Predictions and field measurements of the GPS Block IIR L1 and L2 ground powers. In: ION NTM 2002. San Diego, pp 931–938Google Scholar
  74. Wübbena G (1985) Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In: Goad C (ed) Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, U.S. Department of Commerce, Rockville, pp 403–412Google Scholar
  75. Xiao W, Liu W, Sun G (2015) Modernization milestone: BeiDou M2-S initial signal analysis. GPS Solut 20(1):125–133.  https://doi.org/10.1007/s10291-015-0496-7 CrossRefGoogle Scholar
  76. Yang Y, Tang J, Montenbruck O (2017) Chinese navigation satellite systems. In: Teunissen P, Montenbruck O (eds) Springer Handbook of Global Navigation Satellite Systems, chap 10. Springer, Berlin, pp 273–304.  https://doi.org/10.1007/978-3-319-42928-1_10
  77. Ziebart M, Edwards S, Adhya S, Sibthrope A, Arrowsmith P, Cross P (2004) High precision GPS IIR orbit prediction using analytical non-conservative force models. In: ION GNSS 2004. Long Beach, pp 1764–1770Google Scholar
  78. Ziebart M, Sibthrope A, Cross P, Bar-Sever Y, Haines B (2007) Cracking the GPS-SLR orbit anomaly. In: ION GNSS 2007. Fort Worth, pp 2033–2038Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.German Space Operations Center (GSOC)Deutsches Zentrum für Luft- und Raumfahrt (DLR)WeßlingGermany
  2. 2.Institute of Communications and Navigation (IKN)Deutsches Zentrum für Luft- und Raumfahrt (DLR)WeßlingGermany

Personalised recommendations