Advertisement

Journal of Geodesy

, Volume 92, Issue 4, pp 443–451 | Cite as

Short note: the experimental geopotential model XGM2016

  • R. Pail
  • T. Fecher
  • D. Barnes
  • J. F. Factor
  • S. A. Holmes
  • T. Gruber
  • P. Zingerle
Short Note

Abstract

As a precursor study for the upcoming combined Earth Gravitational Model 2020 (EGM2020), the Experimental Gravity Field Model XGM2016, parameterized as a spherical harmonic series up to degree and order 719, is computed. XGM2016 shares the same combination methodology as its predecessor model GOCO05c (Fecher et al. in Surv Geophys 38(3): 571–590, 2017. doi: 10.1007/s10712-016-9406-y). The main difference between these models is that XGM2016 is supported by an improved terrestrial data set of \(15^\prime \times 15^\prime \) gravity anomaly area-means provided by the United States National Geospatial-Intelligence Agency (NGA), resulting in significant upgrades compared to existing combined gravity field models, especially in continental areas such as South America, Africa, parts of Asia, and Antarctica. A combination strategy of relative regional weighting provides for improved performance in near-coastal ocean regions, including regions where the altimetric data are mostly unchanged from previous models. Comparing cumulative height anomalies, from both EGM2008 and XGM2016 at degree/order 719, yields differences of 26 cm in Africa and 40 cm in South America. These differences result from including additional information of satellite data, as well as from the improved ground data in these regions. XGM2016 also yields a smoother Mean Dynamic Topography with significantly reduced artifacts, which indicates an improved modeling of the ocean areas.

Keywords

Gravity Combined gravity field model Spherical harmonics Full normal equation systems High-performance computing 

Notes

Acknowledgements

We acknowledge the provision of extensive supercomputing resources by the Leibniz Supercomputing Centre (LRZ; Address: Boltzmannstraße 1, 85748 Garching bei München, Germany). We also acknowledge the valuable comments of three unknown reviewers.

References

  1. Andersen O, Knudsen P, Stenseng L (2015) The DTU13 MSS (mean sea surface) and MDT (mean dynamic topography) from 20 years of satellite altimetry. In: Jin S, Barzaghi R (eds) IGFS 2014: International association of geodesy symposia, vol 144. Springer, Berlin, pp 111–121. doi: 10.1007/1345_2015_182 CrossRefGoogle Scholar
  2. Bingham RJ, Haines K, Hughes CW (2008) Calculating the ocean’s mean dynamic topography from a mean sea surface and a geoid. J Atmos Ocean Techol 25(10):1808–1822. doi: 10.1175/2008JTECHO568.1 CrossRefGoogle Scholar
  3. Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first Earth Explorer Core mission. In: Beutler G et al (eds) Earth gravity field from space–from sensors to earth science. Space Sciences Series of ISSI, vol 18. Kluwer Academic Publishers, Dordrecht, pp 419–432. doi: 10.1007/978-94-017-1333-7_36 CrossRefGoogle Scholar
  4. Ebbing J, Bouman J, Fuchs M, Lieb V, Haagmans R, Meekes JAC, Fattah RA (2013) Advancements in satellite gravity gradient data for crustal studies. Lead Edge 32(8):900–906. doi: 10.1190/tle32080900.1 CrossRefGoogle Scholar
  5. Fecher T, Pail R, Gruber T (2017) GOCO05c: a new combined gravity field model based on full normal equations and regionally varying weighting. Surv Geophys 38(3):571–590. doi: 10.1007/s10712-016-9406-y CrossRefGoogle Scholar
  6. Förste C, Bruinsma S, Abrykosov O, Flechtner F, Marty JC, Lemoine JM, Dahle C, Neumayer KH, Barthelmes F, König R, Biancale R (2014) EIGEN-6C4—the latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse. Geophys Res Abstr 16, EGU2014-3707, General Assembly European Geosciences Union, Vienna, AustriaGoogle Scholar
  7. Gruber T, Bode A, Reigber C, Schwintzer P, Balmino G, Biancale R, Lemoine JM (2000) GRIM5-C1: combination solution of the global gravity field to degree and order 120. Geophys Res Lett 27(24):4005–4008Google Scholar
  8. Gruber T, Visser PNAM, Ackermann C, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geod 85(11):845–860. doi: 10.1007/s00190-011-0486-7 CrossRefGoogle Scholar
  9. Hirt C, Rexer M (2015) Earth 2014: 1 arc-min shape, topography, bedrock and ice-sheet models—available as gridded data and degree 10,800 spherical harmonics. Int J Appl Earth Observ Geoinf 39:103–112. doi: 10.1016/j.jag.2015.03.001 CrossRefGoogle Scholar
  10. Li X, Crowley JW, Holmes SA, Wang YM (2016) The contribution of the GRAV-D airborne gravity to geoid determination in the Great Lakes region. Geophys Res Lett 43:4358–4365. doi: 10.1002/2016GL068374 CrossRefGoogle Scholar
  11. Ihde J, Sánchez L, Barzaghi R, Drewes H, Förste C, Gruber T, Liebsch G, Marti U, Pail R, Sideris M (2017) Definition and proposed realization of the international height reference system (IHRS). Surv Geophys 38:549–570. doi: 10.1007/s10712-017-9409-3 CrossRefGoogle Scholar
  12. Mayer-Gürr T (2007) ITG-Grace03s: the latest GRACE gravity field solution computed in Bonn. In: Presentation at the joint international GSTM and SPP symposium, Potsdam, Germany, 15–17 OctoberGoogle Scholar
  13. Mayer-Guerr T, the GOCO Consortium (2015) The combined satellite gravity field model GOCO05s. Geophys Res Abstr 17, EGU2015-12364, Vienna, Austria 2015Google Scholar
  14. Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843. doi: 10.1007/s00190-011-0467-x CrossRefGoogle Scholar
  15. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res. doi: 10.1029/2011JB008916 Google Scholar
  16. Scheinert M, Ferraccioli F, Schwabe J, Bell R, Studinger M, Damaske D, Jokat W, Aleshkova N, Jordan T, Leitchenkov G, Blankenship D, Damiani T, Young D, Cochran J, Richter T (2016) New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica. Geophys Res Lett 43(2):600–610. doi: 10.1002/2015GL067439 CrossRefGoogle Scholar
  17. Shako R, Förste C, Abrykosov O, Bruinsma S, Marty J-C, Lemoine J-M, Flechtner F, Neumayer K-H, Dahle C (2014) EIGEN-6C: a high-resolution global gravity combination model including GOCE data. In: Flechtner F, Sneeuw N, Schuh W-D (eds) Observation of the system earth from space–CHAMP, GRACE, GOCE and future missions, GEOTECHNOLOGIEN Science Report no 20, Advanced Technologies in Earth Sciences). Springer, Berlin, pp 155–161. doi: 10.1007/978-3-642-32135-1_20 Google Scholar
  18. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophy Res Lett 31(9):L09607. doi: 10.1029/2004GL019920 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Astronomical and Physical GeodesyMunichGermany
  2. 2.United States National Geospatial-Intelligence Agency (NGA)ArnoldUSA
  3. 3.SGT Inc.GreenbeltUSA

Personalised recommendations