Journal of Geodesy

, Volume 92, Issue 4, pp 383–399 | Cite as

Assessment of the possible contribution of space ties on-board GNSS satellites to the terrestrial reference frame

  • Sara Bruni
  • Paul Rebischung
  • Susanna Zerbini
  • Zuheir Altamimi
  • Maddalena Errico
  • Efisio Santi
Original Article


The realization of the international terrestrial reference frame (ITRF) is currently based on the data provided by four space geodetic techniques. The accuracy of the different technique-dependent materializations of the frame physical parameters (origin and scale) varies according to the nature of the relevant observables and to the impact of technique-specific errors. A reliable computation of the ITRF requires combining the different inputs, so that the strengths of each technique can compensate for the weaknesses of the others. This combination, however, can only be performed providing some additional information which allows tying together the independent technique networks. At present, the links used for that purpose are topometric surveys (local/terrestrial ties) available at ITRF sites hosting instruments of different techniques. In principle, a possible alternative could be offered by spacecrafts accommodating the positioning payloads of multiple geodetic techniques realizing their co-location in orbit (space ties). In this paper, the GNSS–SLR space ties on-board GPS and GLONASS satellites are thoroughly examined in the framework of global reference frame computations. The investigation focuses on the quality of the realized physical frame parameters. According to the achieved results, the space ties on-board GNSS satellites cannot, at present, substitute terrestrial ties in the computation of the ITRF. The study is completed by a series of synthetic simulations investigating the impact that substantial improvements in the volume and quality of SLR observations to GNSS satellites would have on the precision of the GNSS frame parameters.


Space ties SLR GNSS ITRF Origin Scale 



This work was performed under grant ECOCZERB from the Università di Bologna. ILRS and IGS are kindly acknowledged for providing the original data. The authors would like to thank the anonymous reviewers for their valuable comments and suggestions which contributed to improving the quality of the manuscript.


  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res Solid Earth. doi: 10.1029/2007JB004949 Google Scholar
  2. Altamimi Z, Collilieux X, Boucher C (2008) Accuracy assessment of the ITRF datum definition. In: Xu P, Liu J, Dermanis A (eds) VI Hotine-Marussi symposium on theoretical and computational geodesy. Springer, Berlin, pp 101–110. doi: 10.1007/978-3-642-22078-4 CrossRefGoogle Scholar
  3. Altamimi Z, Collilieux X, Metivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  4. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res Solid Earth 121:6109–6131. doi: 10.1002/2016JB013098 CrossRefGoogle Scholar
  5. Appleby G, Rodríguez J, Altamimi Z (2016) Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993–2014. J Geod 90:1371–1388. doi: 10.1007/s00190-016-0929-2 CrossRefGoogle Scholar
  6. Arnold D, Meindl M, Beutler G et al (2015) CODE’s new solar radiation pressure model for GNSS orbit determination. J Geod 89:775. doi: 10.1007/s00190-015-0814-4 CrossRefGoogle Scholar
  7. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19:367–384Google Scholar
  8. Blewitt G (2015) Terrestrial reference frame requirements for studies of geodynamics and climate change. In: IAG Symposium Springer, Berlin, pp 1–8. doi: 10.1007/1345_2015_142
  9. Blewitt G, Altamimi Z, Davis JL, Gross R, Kuo C-Y, Lemoine FG, Moore AW, Neilan RE, Plag H-P, Rothacher M, Shum CK, Sideris MG, Schöne T, Tregoning P, Zerbini S (2010) Geodetic observations and global reference frame contributions to understanding sea-level rise and variability. In: Church J, Woodworth PL, Aarup T, Wilson S (eds) Understanding sea-level rise and variability. Wiley, Chichester, pp 256–284. ISBN 978-1-443-3451-7Google Scholar
  10. Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111:B02406. doi: 10.1029/2005JB003629 CrossRefGoogle Scholar
  11. Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res 102:20489–20502. doi: 10.1029/97JB01739
  12. Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS software version 5.0. user manual. Astronomical Institute, University of Bern, BernGoogle Scholar
  13. Dach R, Lutz S, Walser P, Fridez P (2015) Bernese GNSS software version 5.2. user manual. Astronomical Institute, University of Bern, Bern Open Publishing. doi: 10.17892/boris.72297. ISBN: 978-3-906813-05-9
  14. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83:191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  15. General Assembly of the United Nations Resolution 69/266 (26 February 2015) A global geodetic reference frame for sustainable development, A/RES/69/266Google Scholar
  16. Hugentobler U, Meindl M, Beutler G, Bock H, Dach R, Jäggi A, Urschl C, Mervart L, Rothacher M, Schaer S, Brockmann E, Ineichen D, Wiget A, Wild U, Weber G, Habrich H, Boucher C (2006) CODE IGS analysis center technical report 2003/2004. In: Gowey K, Neilan R, Moore A (eds) IGS 2004 technical reports. IGS Central BureauGoogle Scholar
  17. IERS Conventions Center (2015) Updates to the IERS conventions (2010).
  18. Luceri V, Pavlis E (2016) The ILRS contribution to ITRF2014.
  19. Lutz S, Meindl M, Steigenberger P, Beutler G, Sośnica K, Schaer S, Dach R, Arnold D, Thaller D, Jäggi A (2016) Impact of the arc length on GNSS analysis results. J Geod 90(4):365–378. doi: 10.1007/s00190-015-0878-1 CrossRefGoogle Scholar
  20. Meindl M (2011) Combined analysis of observations from different global navigation satellite systems. PhD thesis Geodätisch-geophysikalischeArbeiten in der Schweiz, vol 83Google Scholar
  21. Mendes V, Pavlis EC (2004) High-accuracy zenith delay prediction at optical wavelengths. Geoph Res Lett 31:L14602. doi: 10.1029/2004GL020308 CrossRefGoogle Scholar
  22. Mendes V, Prates G, Pavlis EC, Pavlis DE, Langley RB (2002) Improved mapping functions for atmospheric refraction correction in SLR. Geophys Res Lett. doi: 10.1029/2001GL014394 Google Scholar
  23. Minster JB, Altamimi Z, Blewitt G, Carter WE, Cazenave A, Dragert H, Herring TA, Larson KM, Ries JC, Sandwell DT, Wahr JM, Davis JL (2010) Precise geodetic infrastructure: national requirements for a shared resource. The National Academies Press, Washington, DC, p 142. ISBN 10-309-15811-7Google Scholar
  24. Mueller H, Vei M (2016) ILRS SINEX file with data handling recommentations.
  25. Nerem RS, Chambers DP, Choe C, Mitchum GT (2010) Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar Geod 33(S1):435–446. doi: 10.1080/01490419.2010.491031 CrossRefGoogle Scholar
  26. Otsubo T, Appleby GM (2003) System-dependent center-of-mass correction for spherical geodetic satellites. J Geophys Res Solid Earth. doi: 10.1029/2002JB002209 Google Scholar
  27. Otsubo T, Appleby GM, Gibbs P (2001) GLONASS laser ranging accuracy with satellite signature effect. Surv Geophys 22(5–6):509–516. doi: 10.1023/A:1015676419548 CrossRefGoogle Scholar
  28. Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30:135–143. doi: 10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  29. Petit G, Luzum B (2010) IERS conventions. In: Petit G, Luzum B (eds) Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 2010. ISBN 3-89888-989-6Google Scholar
  30. Rebischung P (2014) Can GNSS contribute to improving the ITRF definition? Dissertation, Observatoire de ParisGoogle Scholar
  31. Rebischung P, Altamimi Z, Springer T (2014) A collinearity diagnosis of the GNSS geocenter determination. J Geod 88(1):65–85. doi: 10.1007/s00190-013-0669-5 CrossRefGoogle Scholar
  32. Rebischung P, Altamimi Z, Ray J, Garyat B (2016) The IGS contribution to ITRF2014. J Geod 90(7):611–630. doi: 10.1007/s00190-016-0897-6 CrossRefGoogle Scholar
  33. Rodriguez-Solano C, Hugentobler U, Steigenberger P, Bloßfeld M, Fritsche M (2014) Reducing the draconitic errors in GNSS geodetic products. J Geod 88(6):559–574. doi: 10.1007/s00190-014-0704-1 CrossRefGoogle Scholar
  34. Sarti P, Abbondanza C, Altamimi Z (2013) Local ties and co-location sites: some considerations after the release of ITRF2008. In: Altamimi Z, Collilieux X (eds) Reference frames for applications in geosciences. Springer, Berlin, pp 75–80. doi: 10.1007/978-3-642-32998-2_13 CrossRefGoogle Scholar
  35. Schmid R, Dach R, Collilieux X, Jäggi A, Schmitz M, Dilssner F (2016) Absolute IGS antenna phase center model igs08.atx: status and potential improvements. J Geod 90(4):343–364. doi: 10.1007/s00190-015-0876-3 CrossRefGoogle Scholar
  36. Sośnica K, Jäggi A, Thaller D, Beutler G, Dach R (2014) Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame. J Geod 88(8):789–804. doi: 10.1007/s00190-014-0722-z CrossRefGoogle Scholar
  37. Sośnica K, Thaller D, Dach R, Steigenberger P, Beutler G, Arnold D, Jäggi A (2015) Satellite laser ranging to GPS and GLONASS. J Geod 89:725–743. doi: 10.1007/s00190-015-0810-8 CrossRefGoogle Scholar
  38. Thaller D (2008) Inter-technique combination based on homogeneous normal equation systems including station coordinates. Earth orientation and troposphere parameters. Scientific technical report STR 08/15, DeutschesGeoForschungsZentrum Potsdam, ISSN 1610-0956. doi: 10.2312/GFZ.b103-08153
  39. Thaller D, Dach R, Seitz M, Beutler G, Mareyen M, Richter B (2011) Combination of GNSS and SLR observations using satellite co-locations. J Geod 85(5):257–272. doi: 10.1007/s00190-010-0433-z CrossRefGoogle Scholar
  40. Thaller D, Roggenbuck O, Sośnica K, Steigenberger P, Mareyen M, Baumann C, Dach R, Jäggi A (2013) SLR-GNSS analysis in the framework of the ITRF2013 computation. In: Proceedings of the 18th international workshop on laser ranging, Fujiyoshida, Japan.
  41. Thaller D, Sośnica K, Dach R, Jäggi A, Beutler G, Mareyen M, Richter B (2014) Geocenter coordinates from GNSS and combined GNSS-SLR solutions using satellite co-locations. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet. Springer, Berlin, pp 129–134. doi: 10.1007/978-3-642-37222-3_16 CrossRefGoogle Scholar
  42. Thaller D, Sośnica K, Steigenberger P, Roggennbuck O (2015) Pre-combined GNSS-SLR solutions what could be the benefit for the ITRF? In: van Dam T (ed) REFAG 2014. IAGSymp, vol 146. Springer, Cham, pp 85–94. doi: 10.1007/1345_2015_215 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.DIFA Dipartimento di Fisica e AstronomiaUniversity of BolognaBolognaItaly
  2. 2.Laboratoire de Recherche en Géodésie (LAREG)Institut National de l’Information Géographique et Forestière (IGN)ParisFrance

Personalised recommendations