Journal of Geodesy

, Volume 91, Issue 12, pp 1503–1512 | Cite as

Influence of subdaily polar motion model on nutation offsets estimated by very long baseline interferometry

  • Natalia Panafidina
  • Urs Hugentobler
  • Manuela Seitz
  • Hana Krásná
Original Article


This paper studies the connection between the subdaily model for polar motion used in the processing of very long baseline interferometry (VLBI) observations and the estimated nutation offsets. By convention accepted by the International Earth Rotation Service, the subdaily model for polar motion recommended for routine processing of geodetic observations does not contain any daily retrograde terms due to their one-to-one correlation with the nutation. Nevertheless, for a 24-h VLBI solution a part of the signal contained in the polar motion given by the used subdaily model is numerically mistaken for a retrograde daily sidereal signal. This fictitious retrograde daily signal contributes to the estimated nutation, leading to systematic differences between the nutation offsets from VLBI solutions computed with different subdaily polar motion models. We demonstrate this effect using solutions for all suitable 24-h VLBI sessions over a time span of 11 years (2000–2011). By changing the amplitudes of one tidal term in the underlying subdaily model for polar motion and comparing the estimated parameters to the solutions computed with the unchanged subdaily model, the paper shows and explains theoretically the effects produced by the individual subdaily terms on the VLBI nutation estimates.


Terrestrial reference frame Celestial reference frame Earth rotation parameters Subdaily tidal models VLBI 



This work was done within the research unit “Space-time reference systems for monitoring global change and for precise navigation in space” (FOR 1503) of the German Research Foundation (DFG).


  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  2. Artz T, Tesmer nee Boeckmann S, Nothnagel A (2011) Assessment of periodic sub-diurnal Earth rotation variations at tidal frequencies through transformation of VLBI normal equation systems. J Geod 85(10):565–584. doi: 10.1007/s00190-011-0457-z CrossRefGoogle Scholar
  3. Artz T, Bernhard L, Nothnagel A, Steigenberger P, Tesmer S (2012) Methodology for the combination of sub-daily Earth rotation from GPS and VLBI observations. J Geod 86:221–239. doi: 10.1007/s00190-011-0512-9 CrossRefGoogle Scholar
  4. Bachmann S, Thaller D, Roggenbuck O, Lösler M, Messerschmitt L (2016) IVS contribution to ITRF2014. J Geod 90(7):631–654. doi: 10.1007/s00190-016-0899-4 CrossRefGoogle Scholar
  5. Fey AL, Gordon D, Jacobs CS, Ma C, Gaume RA, Arias EF, Bianco G, Boboltz DA, Bckmann S, Bolotin S, Charlot P, Collioud A, Engelhardt G, Gipson J, Gontier AM, Heinkelmann R, Kurdubov S, Lambert S, Lytvyn S, MacMillan DS, Malkin Z, Nothnagel A, Ojha R, Skurikhina E, Sokolova J, Souchay J, Sovers OJ, Tesmer V, Titov O, Wang G, Zharov V (2015) The second realization of the international celestial reference frame by very long baseline interferometry. Astron J 150:58. doi: 10.1088/0004-6256/150/2/58.s CrossRefGoogle Scholar
  6. Griffiths J, Ray J (2013) Sub-daily alias and draconitic errors in the IGS orbits. GPS Solut 17:413–422. doi: 10.1007/s10291-012-0289-1 CrossRefGoogle Scholar
  7. Kouba J (2003) Testing of the IERS2000 sub-daily Earth rotation parameter model. Stud Geophys Geod 47:725–739. doi: 10.1023/A:1026338601516 CrossRefGoogle Scholar
  8. Ma C, Arias EF, Eubanks TM, Fey AL, Gontier A-M, Jacobs CS, Sovers OJ, Archinal BA, Charlot P (1998) The international celestial reference frame as realized by very long baseline interferometry. Astron J 116:516–546Google Scholar
  9. Panafidina N, Hugentober U, Seitz M (2014) Interaction between subdaily Earth rotation parameters and GPS orbits. In: Proceedings of the IAG symposium 2013, Potsdam, IAG 150 years. doi: 10.1007/978-3-319-30895-1
  10. Petit G, Luzum B (eds) (2010) IERS Conventions 2010. IERS Tech Note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  11. Petrachenko B, Niell A, Behrend D, Corey B, Boehm J, Charlot P, Collioud A, Gipson J, Haas R, Hobiger T, Koyama Y, MacMillan D, Malkin Z, Nilsson T, Pany A, Tuccari G, Whitney A, Wresnik J (2009) Design aspects of the VLBI2010 system. NASA, NASA/TM-2009-214180, Washington, DCGoogle Scholar
  12. Ray J, McCarthy D (1996) GPS Earth orientation combinations and results: session summaries and recommendations. In IGS workshop proceedings: 1996 IGS analysis center workshop, Maryland, 19–21 March 1996, pp 25–31Google Scholar
  13. Rothacher M, Angermann D, Artz T, Bosch W, Drewes H, Gerstl M, Kelm R, Koenig D, Koenig R, Meisel B, Mueller H, Nothnagel A, Panafidina N, Richter B, Rudenko S, Schwegmann W, Seitz M, Steigenberger P, Tesmer S, Tesmer V, Thaller D (2011) GGOS-D: homogeneous reprocessing and rigorous combination of space geodetic observations. J Geod 85(10):679–705. doi: 10.1007/s00190-011-0475-x CrossRefGoogle Scholar
  14. Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:6880. doi: 10.1016/j.jog.2012.07.007 CrossRefGoogle Scholar
  15. Thaller D (2008) Inter-technique combination based on homogeneous normal equation systems including station coordinates, Earth orientation and troposphere parameters, Dissertation, Scientific Technical Report STR 08/15. Deutsches GeoForschungsZentrum, ISSN 1610–0956. doi: 10.2312/GFZ.b103-08153

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Deutsches Geodätisches Forschungsinstitut der TUMMunichGermany
  2. 2.Technische Universität MünchenMunichGermany
  3. 3.Department of Geodesy and GeoinformationTechnische Universität WienWienAustria

Personalised recommendations