Journal of Geodesy

, Volume 91, Issue 12, pp 1405–1414 | Cite as

Methodology and consistency of slant and vertical assessments for ionospheric electron content models

  • Manuel Hernández-PajaresEmail author
  • David Roma-Dollase
  • Andrzej Krankowski
  • Alberto García-Rigo
  • Raül Orús-Pérez
Original Article


A summary of the main concepts on global ionospheric map(s) [hereinafter GIM(s)] of vertical total electron content (VTEC), with special emphasis on their assessment, is presented in this paper. It is based on the experience accumulated during almost two decades of collaborative work in the context of the international global navigation satellite systems (GNSS) service (IGS) ionosphere working group. A representative comparison of the two main assessments of ionospheric electron content models (VTEC-altimeter and difference of Slant TEC, based on independent global positioning system data GPS, dSTEC-GPS) is performed. It is based on 26 GPS receivers worldwide distributed and mostly placed on islands, from the last quarter of 2010 to the end of 2016. The consistency between dSTEC-GPS and VTEC-altimeter assessments for one of the most accurate IGS GIMs (the tomographic-kriging GIM ‘UQRG’ computed by UPC) is shown. Typical error RMS values of 2 TECU for VTEC-altimeter and 0.5 TECU for dSTEC-GPS assessments are found. And, as expected by following a simple random model, there is a significant correlation between both RMS and specially relative errors, mainly evident when large enough number of observations per pass is considered. The authors expect that this manuscript will be useful for new analysis contributor centres and in general for the scientific and technical community interested in simple and truly external ways of validating electron content models of the ionosphere.


Satellite navigation systems Ionosphere Validation of ionospheric electron content models 



The authors acknowledge the contribution of the four active IGS ionospheric analysis centres, in particular CODE, ESA-ESOC and JPL, for their continuous effort and improvement in their support of the combined IGS GIMs as far as the new analysis centres, NRCAN, CAS and WHU, contributing to IIWG. The English improvements suggested by Mr. Kacper Kotulak are very appreciated as well.


  1. Azpilicueta F, Brunini C (2009) Analysis of the bias between topex and gps vtec determinations. J Geod 83(2):121–127CrossRefGoogle Scholar
  2. Bruyninx C (2004) The euref permanent network: a multi-disciplinary network serving surveyors as well as scientists. GeoInformatics 7(5):32–35Google Scholar
  3. Colombo OL, Hernandez-Pajares M, Juan JM, Sanz J (2002) Wide-area, carrier-phase ambiguity resolution using a tomographic model of the ionosphere. Navigation 49(1):61–69CrossRefGoogle Scholar
  4. Dow JM, Neilan R, Rizos C (2009) The international gnss service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198CrossRefGoogle Scholar
  5. Feltens J (2007) Development of a new three-dimensional mathematical ionosphere model at european space agency/european space operations centre. Space Weather 5(12):1–17CrossRefGoogle Scholar
  6. Feltens J, Angling M, Jackson-Booth N Jakowski N Hoque M Hernández-Pajares M Aragón-Àngel A Orús R Zandbergen R (2011) Comparative testing of four ionospheric models driven with gps measurements. Radio Sci 46(6):1–11Google Scholar
  7. Feltens J (2003) The activities of the ionosphere working group of the international gps service (igs). GPS Solut 7(1):41–46CrossRefGoogle Scholar
  8. Galvan DA, Komjathy A, Hickey MP, Stephens P, Snively J, Tony Song Y, Butala MD, Mannucci AJ (2012) Ionospheric signatures of tohoku-oki tsunami of march 11, 2011: model comparisons near the epicenter. Radio Sci 47(4):1–10CrossRefGoogle Scholar
  9. Ghoddousi-Fard R, Héroux P, Danskin D, Boteler D (2011) Developing a gps tec mapping service over Canada. Space Weather 9(6):1–10CrossRefGoogle Scholar
  10. Hernández-Pajares M et al (2010) Section 9.4 ionospheric model for radio techniques of chapter 9 models for atmospheric propagation delays of IERS conventions 2010. IERS Technical NoteGoogle Scholar
  11. Hernández-Pajares M, Juan J, Sanz J (1999) New approaches in global ionospheric determination using ground gps data. J Atmos Sol Terr Phys 61(16):1237–1247CrossRefGoogle Scholar
  12. Hernández-Pajares M, Juan J, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer S, Krankowski A (2009) The igs vtec maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275CrossRefGoogle Scholar
  13. Hernández-Pajares M, Juan J, Sanz J, Aragón-Àngel A (2012) Propagation of medium scale traveling ionospheric disturbances at different latitudes and solar cycle conditions. Radio Sci 47(6):1–22CrossRefGoogle Scholar
  14. Hernández-Pajares M (2004) IGS ionosphere WG status report: performance of IGS ionosphere TEC maps-position paper. In: IGS workshop, BernGoogle Scholar
  15. Hernández-Pajares M, Juan J, Sanz J, Colombo OL (2000) Application of ionospheric tomography to real-time gps carrier-phase ambiguities resolution, at scales of 400–1000 km and with high geomagnetic activity. Geophys Res Lett 27(13):2009–2012CrossRefGoogle Scholar
  16. Hernández-Pajares M, Juan JM, Sanz J, Aragón-Àngel À, García-Rigo A, Salazar D, Escudero M (2011) The ionosphere: effects, gps modeling and the benefits for space geodetic techniques. J Geod 85(12):887–907CrossRefGoogle Scholar
  17. Hernández-Pajares M, Aragón-Ángel À, Defraigne P, Bergeot N, Prieto-Cerdeira R, García-Rigo A (2014) Distribution and mitigation of higher-order ionospheric effects on precise gnss processing. J Geophys Res Solid Earth 119(4):3823–3837CrossRefGoogle Scholar
  18. Hernández-Pajares M, Roma-Dollase D, Krankowski A, Ghoddousi-Fard R, Yuan Y, Li Z, Zhang H, Shi C, Feltens J, Komjathy A, Vergados P, Schaer S, Garcia-Rigo A, Gmez-Cama JM (2016) Comparing performances of seven different global VTEC ionospheric models in the IGS context. In: IGS workshop, Feb 8–12, 2016, Sydney, Australia, International GNSS Service (IGS), pp 1–31. International GNSS Service (IGS)Google Scholar
  19. Hudnut KW, Bock Y, Galetzka JE, Webb FH, Young WH (2001) The southern California integrated GPS network (SCIGN). In: The 10th FIG international symposium on deformation measurements, Orange California, USA, pp 19–22. Orange California, USAGoogle Scholar
  20. Janssen V, White A, Yan T (2010) CORSnet-NSW: towards state-wide CORS infrastructure for New South Wales, Australia. In: FIG Congress 2010, pp 1–14Google Scholar
  21. Juan J, Hernández-Pajares M, Sanz J, Ramos-Bosch P, Orus R, Ochieng W, Feng S, Jofre M, Coutinho P, Samson J et al (2012) Enhanced precise point positioning for gnss users. IEEE Trans Geosci Remote Sens 50(10):4213–4222CrossRefGoogle Scholar
  22. Li Z, Yuan Y, Wang N, Hernandez-Pajares M, Huo X (2015) Shpts: towards a new method for generating precise global ionospheric tec map based on spherical harmonic and generalized trigonometric series functions. J Geod 89(4):331–345CrossRefGoogle Scholar
  23. Mannucci A, Wilson B, Yuan D, Ho C, Lindqwister U, Runge T (1998) Global mapping technique for gps-derived ionospheric total electron content measurements. Radio Sci 33(3):565–582CrossRefGoogle Scholar
  24. Orús R (2005) Contributions on the improvement, assessment and application of the global ionospheric vtec maps computed with gps data. Doctoral dissertation, Ph. D. dissertation. Doctoral Program in Aerospace Science & TechnologyGoogle Scholar
  25. Orús R, Hernández-Pajares M, Juan J, Sanz J (2005) Improvement of global ionospheric vtec maps by using kriging interpolation technique. J Atmos Sol Terr Phys 67(16):1598–1609CrossRefGoogle Scholar
  26. Rovira-Garcia A, Juan JM, Sanz J, Gonzalez-Casado G (2015) A worldwide ionospheric model for fast precise point positioning. IEEE Trans Geosci Remote Sens 53(8):4596–4604CrossRefGoogle Scholar
  27. Sagiya T (2004) A decade of geonet: 1994–2003 the continuous gps observation in japan and its impact on earthquake studies. Earth Planets Space 56(8):29–41CrossRefGoogle Scholar
  28. Schaer S (1999) Mapping and predicting the earths ionosphere using the Global Positioning System. 1999, p 205, Ph.D. thesis, Ph. D. dissertation. University of Bern, Bern, SwitzerlandGoogle Scholar
  29. Schaer S, Beutler G, Rothacher M, Springer TA (1996) Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE Analysis Center, In: Proceedings of the IGS AC Workshop, Silver Spring, MD, USA, pp 181–192Google Scholar
  30. Snay RA, Soler T (2008) Continuously operating reference station (cors): history, applications, and future enhancements. J Surv Eng 134(4):95–104CrossRefGoogle Scholar
  31. Talaya J, Bosch E (1999) CATNET, a permanent GPS network with real-time capabilities. In: Proceedings of ION GPS-99, 12th international technical meeting of the satellite division of The US Institute of Navigation, pp 14–17Google Scholar
  32. Wells D, Beck N, Kleusberg A, J.Krakiwsky E, Lachapelle G, Langley RB, Schwarz K-p, Tranquilla JM, Vanicek P, Delikaraoglou D (1987) Guide to GPS positioning. In: Canadian GPS Assoc, Citeseer. CiteseerGoogle Scholar
  33. Zhang H, Xu P, Han W, Ge M, Shi C (2013) Eliminating negative vtec in global ionosphere maps using inequality-constrained least squares. Adv Space Res 51(6):988–1000CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Universitat Politècnica de Catalunya (UPC-IonSAT, SSTRG-IEEC)BarcelonaSpain
  2. 2.Department ElectronicsUniversitat de BarcelonaBarcelonaSpain
  3. 3.Space Radio-Diagnostics Research Centre (SRRC/UWM)University of Warmia and Mazury in OlsztynOlsztynPoland
  4. 4.ESTECEuropean Space AgencyNoordwijkThe Netherlands

Personalised recommendations