Journal of Geodesy

, Volume 91, Issue 11, pp 1299–1311 | Cite as

Contribution of solar radiation and geomagnetic activity to global structure of 27-day variation of ionosphere

  • Yibin Yao
  • Changzhi Zhai
  • Jian Kong
  • Lei Liu
Original Article


Twenty-seven-day variation caused by solar rotation is one of the main periodic effects of solar radiation influence on the ionosphere, and there have been many studies on this periodicity using peak electron density \(\mathrm{N_{m}F_{2}}\) and solar radio flux index F10.7. In this paper, the global electron content (GEC) and observation of Solar EUV Monitor (SEM) represent the whole ionosphere and solar EUV flux, respectively, to investigate the 27-day variation. The 27-day period components of indices \((\hbox {GEC}_{27}\), \(\hbox {SEM}_{27}\), \(\hbox {F10.7}_{27}\), \(\hbox {Ap}_{27})\) are obtained using Chebyshev band-pass filter. The comparison of regression results indicates that the index SEM has higher coherence than F10.7 with 27-day variation of the ionosphere. The regression coefficients of \(\hbox {SEM}_{27 }\) varied from 0.6 to 1.4 and the coefficients of \(\hbox {Ap}_{27}\) varied from \({-}\)0.6 to 0.3, which suggests that EUV radiation seasonal variations are the primary driver for the 27-day variations of the ionosphere for most periods. TEC map grid points on three meridians where IGS stations are dense are selected for regression, and the results show that the contribution of solar EUV radiation is positive at all geomagnetic latitudes and larger than geomagnetic activity in most latitudes. The contribution of geomagnetic activity is negative at high geomagnetic latitude, increasing with decreasing geomagnetic latitudes, and positive at low geomagnetic latitudes. The global structure of 27-day variation of ionosphere is presented and demonstrates that there are two zonal anomaly regions along with the geomagnetic latitudes lines and two peaks in the north of Southeast Asia and the Middle Pacific where \(\hbox {TEC}_{27}\) magnitude values are notably larger than elsewhere along zonal anomaly regions.


27-day variation in ionosphere Solar radiation Geomagnetic activity Global structure 



The authors would like to express their gratitude to Center for Orbit Determination in Europe (CODE) for TEC maps. The F10.7 and Ap indices data are available through, and the SEM data are downloaded from This work was supported by the General Program of National Natural Science Foundation of China (No. 41274022, 41574028) and the Natural Science Foundation for Distinguished Young Scholars of Hubei Province of China (No. 2015CFA036).


  1. Afraimovich EL, Astafyeva EI, Zhivetiev IV (2006) Solar activity and global electron content. Doklady Earth Sci 409(2):921–924. doi: 10.1134/S1028334X06060195 CrossRefGoogle Scholar
  2. Afraimovich EL, Astafyeva EI, Oinats AV, Yasukevich YV, Zhivetiev IV (2008) Global electron content: a new conception to track solar activity. Ann Geophys 26(2):335–344Google Scholar
  3. Altadill D, Apostolov EM (2003) Time and scale size of planetary wave signatures in the ionospheric F region: role of the geomagnetic activity and mesosphere/lower thermosphere winds. J Geophys Res Space Phys (1978–2012) 108(A11):45Google Scholar
  4. Apostolov EM, Altadill D, Todorova M (2004) The 22-year cycle in the geomagnetic 27-day recurrences reflecting on the F2-layer ionization. Ann Geophys 22(4):1171–1176. doi: 10.5194/angeo-22-1171-2004 CrossRefGoogle Scholar
  5. Astafyeva E, Zakharenkova I, Förster M (2015) Ionospheric response to the 2015 St. Patrick’s Day storm: a global multi-instrumental overview. J Geophys Res Space Phys 120(10):9023–9037. doi: 10.1002/2015JA021629 CrossRefGoogle Scholar
  6. Balan N, Bailey GJ, Jenkins B, Rao PB, Moffett RJ (1994) Variations of ionospheric ionization and related solar fluxes during an intense solar cycle. J Geophys Res Atmos 99(A2):2243–2253. doi: 10.1029/93JA02099 CrossRefGoogle Scholar
  7. Bartels J (1950) 27-day variations in F2 layer critical frequencies at Huancayo. J Atmos Terr Phys 1(1):2–12. doi: 10.1016/0021-9169(50)90010-9 CrossRefGoogle Scholar
  8. Batista IS, de Paula ER, Abdu MA, Trivedi NB (1991) Ionospheric effects of the March 13, 1989, magnetic storm at low and equatorial latitudes. J Geophys Res 96:13,943–13,952CrossRefGoogle Scholar
  9. Chen Y, Liu L, Wan W (2011) Does the F\(_{10. 7}\) index correctly describe solar EUV flux during the deep solar minimum of 2007–2009? J Geophys Res Space Phys 116(A4):1451–1453Google Scholar
  10. Danilov AD (2001) F2-region response to geomagnetic disturbances. J Atmos Sol Terr Phys 63(5):441–449. doi: 10.1016/S1364-6826(00)00175-9 CrossRefGoogle Scholar
  11. Dashora N, Suresh S (2015) Characteristics of low-latitude TEC during solar cycles 23 and 24 using global ionospheric maps (GIMs) over Indian sector. J Geophys Res Space Phys 120(6):5176–5193CrossRefGoogle Scholar
  12. Didkovsky LV, Judge DL, Jones AR, Wieman S, Tsurutani BT, Mcmullin D (2007) Correction of SOHO CELIAS/SEM EUV measurements saturated by extreme solar flare events. Astron Nachr 328(1):36–40CrossRefGoogle Scholar
  13. England SL, Maus S, Immel TJ, Mende SB (2006) Longitudinal variation of the E-region electric fields caused by atmospheric tides. Geophys Res Lett 33:L21105. doi: 10.1029/2006GL027465 CrossRefGoogle Scholar
  14. Gonzalez WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VM (1994) What is a geomagnetic storm? J Geophys Res Space Phys 99(A4):5771–5792CrossRefGoogle Scholar
  15. Greenspan ME, Rasmussen CE, Burke WJ, Abdu MA (1991) Equatorial density depletion observed at 840 km during the great magnetic storm of March 1989. J Geophys Res 96:13,931–13,942CrossRefGoogle Scholar
  16. Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275CrossRefGoogle Scholar
  17. Hernández-Pajares M, García-Rigo A, Juan JM, Sanz J, Monte E, Aragón-Àngel A (2012) GNSS measurement of EUV photons flux rate during strong and mid solar flares. Space Weather 10(12):1702–1711Google Scholar
  18. Hocke K (2008) Oscillations of global mean TEC. J Geophys Res Space Phys 113(A4). doi: 10.1029/2007JA012798
  19. Immel TJ, Sagawa E, England SL, Henderson SB, Hagan ME, Mende SB, Frey HU, Swenson CM, Paxton LJ (2006) Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett 33:L15108. doi: 10.1029/2006GL026161 CrossRefGoogle Scholar
  20. Jian L, Russell CT, Luhmann JG, Skoug RM (2006) Properties of interplanetary coronal mass ejections at one au during 1995–2004. Sol Phys 239(1):393–436CrossRefGoogle Scholar
  21. Jian L, Russell CT, Luhmann JG, Skoug RM (2006) Properties of stream interactions at one au during 1995–2004. Sol Phys 239(1):337–392CrossRefGoogle Scholar
  22. Judge DL, Mcmullin DR, Ogawa HS, Hovestadt D, Klecker B, Hilchenbach M et al (1998) First solar EUV irradiances obtained from SOHO by the CELIAS/SEM. Solar Phys 177(1):161–173Google Scholar
  23. Kane RP, Vats HO, Sawant HS (2001) Short-term periodicities in the time series of solar radio emissions at different solar altitudes. Sol Phys 201:181–190. doi: 10.1023/A:1010349014498 CrossRefGoogle Scholar
  24. Kane RP (2002) Variability in the periodicity of 27 day in solar indices. Sol Phys 209:207–216. doi: 10.1023/A:1020959817176 CrossRefGoogle Scholar
  25. Kane RP (2003) Solar EUV and ionospheric parameters: a brief assessment. Adv Space Res 32:1713–1718. doi: 10.1016/S0273-1177(03)90467-4 CrossRefGoogle Scholar
  26. Kutiev I, Otsuka Y, Pancheva D, Heelis R (2012) Response of low-latitude ionosphere to medium-changes of solar and geomagnetic activity. J Geophys Res Space Phys (1978–2012) 117(A8):3Google Scholar
  27. Lean JL, Meier RR, Picone JM, Emmert JT (2011) Ionospheric total electron content: global and hemispheric climatology. J Geophys Res Space Phys 116(A10). doi: 10.1029/2011JA016567
  28. Lee CK, Han SC, Bilitza D, Seo KW (2012) Global characteristics of the correlation and time lag between solar and ionospheric parameters in the 27-day period. J Atmos Sol Terr Phys 77(219–224):1Google Scholar
  29. Lei J, Thayer JP, Forbes JM, Sutton EK, Nerem RS (2008) Rotating solar coronal holes and periodic modulation of the upper atmosphere. Geophys Res Lett 35(10):105Google Scholar
  30. Liu L, Wan W, Ning B, Pirog OM, Kurkin VI (2006) Solar activity variations of the ionospheric peak electron density. J Geophys Res Space Phys (1978–2012) 111(A8):133. doi: 10.1029/2006JA011598 Google Scholar
  31. Liu L, Wan W, Ning B, Zhang ML (2009) Climatology of the mean total electron content derived from GPS global ionospheric maps. J Geophys Res Space Phys 114(A6). doi: 10.1029/2009JA014244
  32. Liu J, Chen R, Wang Z, An J, Hyyppä J (2014) Long-term prediction of the Arctic ionospheric TEC based on time-varying periodograms. PloS One 9(11):e111497CrossRefGoogle Scholar
  33. Lyons RG (2011) Understanding digital signal processing, 3rd edn. Pearson Education, IndiaGoogle Scholar
  34. Ma R, Ji Q, Xu J (2007) Wavelet analysis of 27-day oscillations in the solar index F10.7 (in Chinese). Chin J Space Sci 27:89–95Google Scholar
  35. Ma R, Xu J, Wang W, Lei J (2012) The effect of \(\sim \) 27 day solar rotation on ionospheric F2 region peak densities (NmF2). J Geophys Res Space Phys (1978–2012) 117(A3):12Google Scholar
  36. Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) Global mapping technique for GPS-derived ionospheric total electron content measurements. Radio sci 33(3):565–582CrossRefGoogle Scholar
  37. Pancheva D, Mitchell N, Clark RR, Drobjeva J, Lastovicka J (2002) Variability in the maximum height of the ionospheric F2-layer over Millstone Hill (September 1998? March 2000); influence from below and above. Ann Geophys 20(11):1807–1819CrossRefGoogle Scholar
  38. Pap J, Tobiska WK, Bouwer SD (1990) Periodicities of solar irradiance and solar activity indices, I. Sol Phys 129:165–189. doi: 10.1007/BF00154372 CrossRefGoogle Scholar
  39. Prölss GW (1995) Ionospheric F region storms. In: Volland H (ed) Handbook of atmospheric electrodynamics, vol 2. CRC Press, Boca Raton, pp 195–248Google Scholar
  40. Rabiner L (1976) Approximation methods for electronic filter design. IEEE Trans Acoust Speech Signal Process 24(4):346–346CrossRefGoogle Scholar
  41. Rishbeth H (1998) How the thermospheric circulation affects the ionospheric F2-layer. J Atmos Sol Terr Phys 60:1385–1402. doi: 10.1016/S1364-6826(98)00062-5 CrossRefGoogle Scholar
  42. Rishbeth H, Mendillo M (2001) Patterns of F2-layer variability. J Atmos Sol Terr Phys 63:1661–1680. doi: 10.1016/S1364-6826(01)00036-0 CrossRefGoogle Scholar
  43. Sagawa E, Immel TJ, Frey HU, Mende SB (2005) Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. J Geophys Res 110:A11302. doi: 10.1029/2004JA010848 CrossRefGoogle Scholar
  44. Szentirmai G (1982) Electronic filter design handbook. Proc IEEE 70(3):317–317CrossRefGoogle Scholar
  45. Tanaka T (1986) Low-latitude ionospheric disturbances: results for March 22, 1979, and their general characteristics. Geophys Res Lett 13:1399–1402CrossRefGoogle Scholar
  46. Temmer M, Vršnak B, Veronig AM (2007) Periodic appearance of coronal holes and the related variation of solar wind parameters. Sol Phys 241(2):371–383. doi: 10.1007/s11207-007-0336-1 CrossRefGoogle Scholar
  47. Titheridge JE (1973) The electron content of the southern mid-latitude ionosphere, 1965–1971. J Atmos Terr Phys 35(5):981–1001. doi: 10.1016/0021-9169(73)90077-9 CrossRefGoogle Scholar
  48. Tsurutani BT, Gonzalez WD, Gonzalez AL, Guarnieri FL, Gopalswamy N, Grande M,. & McPherron, R. (2006) Corotating solar wind streams and recurrent geomagnetic activity: a review. J Geophys Res Space Phys 111(A7). doi: 10.1029/2005JA011273
  49. Viereck R, Puga L, McMullin D, Judge D, Weber M, Tobiska WK (2001) The Mg II index: a proxy for solar EUV. Geophys Res Lett 28(7):1343–1346CrossRefGoogle Scholar
  50. Wang W, Lei J, Burns AG, Solomon SC, Wiltberger M, Xu J, Zhang Y, Paxton L, Coster A (2010) Ionospheric response to the initial phase of geomagnetic storms: common features. J Geophys Res 115:A07321. doi: 10.1029/2009JA014461 Google Scholar
  51. Woods TN et al (2005) Solar EUV experiment (SEE): mission overview and first results. J Geophys Res 110:A01312. doi: 10.1029/2004JA010765 CrossRefGoogle Scholar
  52. Wyndrum RW (1965) Microwave filters, impedance-matching networks, and coupling structures. Proc IEEE 53(7):766–766CrossRefGoogle Scholar
  53. Xu J, Wang W, Zhang S, Liu X, Yuan W (2015) Multiday thermospheric density oscillations associated with variations in solar radiation and geomagnetic activity. J Geophys Res Space Phys 120(5):3829–3846. doi: 10.1002/2014JA020830 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Geodesy and GeomaticsWuhan UniversityWuhanChina
  2. 2.Chinese Antarctic Center of Surveying and MappingWuhan UniversityWuhanChina

Personalised recommendations