Journal of Geodesy

, Volume 91, Issue 11, pp 1283–1298 | Cite as

Ice mass change in Greenland and Antarctica between 1993 and 2013 from satellite gravity measurements

  • Matthieu J. TalpeEmail author
  • R. Steven Nerem
  • Ehsan Forootan
  • Michael Schmidt
  • Frank G. Lemoine
  • Ellyn M. Enderlin
  • Felix W. Landerer
Original Article


We construct long-term time series of Greenland and Antarctic ice sheet mass change from satellite gravity measurements. A statistical reconstruction approach is developed based on a principal component analysis (PCA) to combine high-resolution spatial modes from the Gravity Recovery and Climate Experiment (GRACE) mission with the gravity information from conventional satellite tracking data. Uncertainties of this reconstruction are rigorously assessed; they include temporal limitations for short GRACE measurements, spatial limitations for the low-resolution conventional tracking data measurements, and limitations of the estimated statistical relationships between low- and high-degree potential coefficients reflected in the PCA modes. Trends of mass variations in Greenland and Antarctica are assessed against a number of previous studies. The resulting time series for Greenland show a higher rate of mass loss than other methods before 2000, while the Antarctic ice sheet appears heavily influenced by interannual variations.


Time-variable Gravity Mass change Greenland Antarctica 



This work was supported by NASA Grant NNX13AK28G, an NESSF fellowship, a Fulbright Fellowship, and the MEASURES investigation. The authors wish to thank R. Rietbroek and E. Pilinski for informative discussions on the use of principal component analysis on the GRACE fields, R. Hardy for the determination of GIA errors, as well as three anonymous reviewers, whose extensive feedback greatly improved this manuscript.


  1. Baur O (2013) Greenland mass variation from time-variable gravity in the absence of GRACE. Geophys Res Lett 40:4289–4293. doi: 10.1002/grl.50881 CrossRefGoogle Scholar
  2. Bettadpur S (2012) UTCSR Level-2 processing standards document (For Level-2 Product Release 0005). Center for Space Research, The University of Texas at Austin, Austin, TXGoogle Scholar
  3. Cerri L, Lemoine JM, Mercier F, Zelensky NP, Lemoine FGR (2013) DORIS-based point mascons for the long term stability of precise orbit solutions. Adv Space Res 52:466–476. doi: 10.1016/j.asr.2013.03.023 CrossRefGoogle Scholar
  4. Chen JL, Wilson CR, Ries JC, Tapley BD (2013) Rapid ice melting drives earth’s pole to the east. Geophys Res Lett 40:2625–2630. doi: 10.1002/grl.50552 CrossRefGoogle Scholar
  5. Cheng M, Ries JC, Tapley BD (2011) Variations of the Earth’s figure axis from satellite laser ranging and GRACE. J Geophys Res 116:B01409. doi: 10.1029/2010JB000850 Google Scholar
  6. Cheng M, Tapley BD, Ries JC (2013) Deceleration in the earth’s oblateness. J Geophys Res Solid Earth 118:740–747. doi: 10.1002/jgrb.50058 CrossRefGoogle Scholar
  7. Church JA, White NJ (2002) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33:L01602. doi: 10.1029/2005GL024826 Google Scholar
  8. Cox CM, Chao BF (2002) Detection of a large-scale mass redistribution in the terrestrial system since 1998. Science 297:831. doi: 10.1126/science.1072188 CrossRefGoogle Scholar
  9. Dahle C, Flechtner F, Gruber C, König D, König R, Michalak G, Neumayer K H (2013) GFZ GRACE Level-2 processing standards document for level-2 product release 0005. , Scientific Technical Report STR12/02 ed, Deutsches GeoForschungsZentrum, Potsdam, GermanyGoogle Scholar
  10. Dobslaw H, Flechtner F, Bergmann-Wolf I, Dahle C, Dill R, Esselbom S, Sagsen I, Thomas M (2013) Simulating high-frequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1 RL05. J Geophys Res Oceans 118:3704–3711. doi: 10.1002/jgrc.20271 CrossRefGoogle Scholar
  11. Enderlin EM, Howat IM, Jeong S, Noh M-J, van Angelen JH, van den Broeke MR (2014) An improved mass budget for the Greenland ice sheet. Geophys Res Lett 41:866–872. doi: 10.1002/2013GL059010 CrossRefGoogle Scholar
  12. Flechtner F, Dobslaw H, Fagiolini E (2015) AOD1B product description document for product release 05. Deutsches GeoForschungsZentrum, PotsdamGoogle Scholar
  13. Forootan E (2014) Statistical signal decomposition techniques for analyzing time-variable satellite gravimetry data. Ph.D. thesis, Universität Bonn.
  14. Forootan E, Kusche J (2012) Separation of global time-variable gravity signals into maximally independent components. J Geod 86:477–497. doi: 10.1007/s00190-011-0532-5 CrossRefGoogle Scholar
  15. Geruo A, Wahr J, Zhong S (2013) Computations of the viscoelastic response of a 3-D compressible earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys J Int 192:557–572. doi: 10.1093/gji/ggs030 CrossRefGoogle Scholar
  16. Haberkorn C, Bloßfeld M, Bouman J, Fuchs M, Schmidt M (2015) Towards a consistent estimation of the earth’s gravity field by combining normal equation matrices from GRACE and SLR. In: IAG symposium series, pp 1–7Google Scholar
  17. Hamlington BD, Leben RR, Nerem RS, Han W, Kim K-Y (2011) Reconstructing sea level using cyclostationary empirical orthogonal functions. J Geophys Res 116:C12015. doi: 10.1029/2011JC007529 CrossRefGoogle Scholar
  18. Ivins ER, James TS, Wahr J, Schrama EJO, Landerer FW, Simon KM (2013) Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J Geophys Res Solid Earth 118:3126–3141. doi: 10.1002/jgrb.50208 CrossRefGoogle Scholar
  19. James TS, Ivins ER (1997) Global geodetic signatures of the Antarctic ice sheet. J Geophys Res 102(B1):605–633. doi: 10.1029/96JB02855 CrossRefGoogle Scholar
  20. Jekeli C (1981) Alternative methods to smooth the earth’s gravity field, geodetic and geoinformation science. Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State UniversityGoogle Scholar
  21. Kaplan A, Kushnir Y, Cane MA (2000) Reduced space optimal interpolation of historical marine sea level pressure: 1854–1992. Bull Am Meteorol Soc 13:2987–3002Google Scholar
  22. Khan SA et al (2016) Geodetic measurements reveal similarities between post-last glacial maximum and present-day mass loss from the Greenland ice sheet. Sci Adv. doi: 10.1126/sciadv.1600931 Google Scholar
  23. Koch KR (1988) Parameter estimation and hypothesis testing in linear models. Springer, New York. ISBN 9783540652571CrossRefGoogle Scholar
  24. Lemoine FG et al (2010) Towards development of a consistent orbit series for TOPEX, Jason-1, and Jason-2. Adv Space Res 46:1513–1540. doi:  10.1016/j.asr.2010.05.007 CrossRefGoogle Scholar
  25. Lemoine FG, Chinn DS, Zelensky NP, Beall JW (2014) Time-variable gravity solutions from 1993–2014 from SLR and DORIS data, Abstract G23A-0472. In: American Geophysical Union Fall Meeting, San Francisco, California, 15–19 Dec 2014Google Scholar
  26. Lemoine FG, Chinn DS, Zelensky NP, Beall JW, Bail KL (2016) The development of the GSFC DORIS contribution to ITRF2014. Adv Space Res. doi: 10.1016/j.asr.2015.12.043 (in press)
  27. Longuevergne L, Scanlon BR, Wilson CR (2010) GRACE Hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour Res 46:W11517. doi: 10.1029/2009WR008564 CrossRefGoogle Scholar
  28. Matsuo K, Chao BF, Otsubo T, Heki K (2013) Accelerated ice mass depletion revealed by low-degree gravity field from satellite laser ranging: Greenland, 1991–2011. Geophys Res Lett. doi: 10.1002/grl.50900 Google Scholar
  29. Moon T, Joughin I, Smith B, van den Broeke MR, de Berg WJV, Noël B, Usher M (2014) Distinct patterns of seasonal Greenland glacier velocity. Geophys Res Lett 41:7209–7216. doi: 10.1002/2014GL061836 CrossRefGoogle Scholar
  30. Morrow E, Mitrovica JX, Sterenborg MG, Harig C (2013) A test of recent inferences of net polar ice mass balance based on long-wavelength gravity. Bull Am Meteorol Soc 26:6535–6540. doi: 10.1175/JCLI-D-13-00078.1 Google Scholar
  31. Nerem RS, Wahr J (2011) Recent changes in the Earth’s oblateness driven by Greenland and Antarctic ice mass loss. Geophys Res Lett 38:L13501. doi: 10.1029/2011GL047879 CrossRefGoogle Scholar
  32. Noël B, van de Berg WJ, van Meijgaard E, Munneke PK, van de Wal RSW, van den Broeke MR (2015) Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet. Cryosphere 9:1831–1844. doi: 10.5194/tcd-9-1831-2015 CrossRefGoogle Scholar
  33. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Bull Am Meteorol Soc 110:699–710Google Scholar
  34. Peltier WR, Argus DF, Drummond R (2015) Space geodesy constrains ice age terminal glaciation: the global ICE-6G_C (VM5a) model. J Geophys Res Solid Earth 120:450–487. doi: 10.1002/2014JB011176 CrossRefGoogle Scholar
  35. Preisendorfer R (1988) Principal component analysis in meteorology and oceanography. Elsevier, Amsterdam. ISBN 0444430148Google Scholar
  36. Ray RD, Douglas BC (2011) Experiments in reconstructing twentieth-century sea levels. Progr Oceanogr 91:496–515. doi: 10.1016/j.pocean.2011.07.021 CrossRefGoogle Scholar
  37. Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts JTM (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38:L05503. doi: 10.1029/2011GL046583 CrossRefGoogle Scholar
  38. Rodell M et al (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394CrossRefGoogle Scholar
  39. Schrama EJO, Wouters B (2011) Revisiting Greenland ice sheet mass loss observed by GRACE. J Geophys Res 116:B02407. doi: 10.1029/2009JB006847 CrossRefGoogle Scholar
  40. Seo K-W, Waliser DE, Lee C-K, Tian B, Scambos T, Kim B-M, van Angelen JH, van den Broeke MR (2015) Accelerated mass loss from Greenland ice sheet: links to atmospheric circulation in the North Atlantic, Global Planet. Change 128:61–71. doi: 10.1016/j.gloplacha.2015.02.006 Google Scholar
  41. Shepherd A et al (2012) A reconciled estimate of ice-sheet mass balance. Science 338:1183. doi: 10.1126/science.1228102 CrossRefGoogle Scholar
  42. Sośnica K, Jäggi A, Meyer U, Thaller D, Beutler G, Arnold D, Dach R (2015) Time variable earth’s gravity field from SLR satellites. J Geod 89(10):945–960. doi: 10.1007/s00190-015-0825-1 CrossRefGoogle Scholar
  43. Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from Gravity Recovery And Climate Experiment (GRACE) measurements of time-variable gravity. J Geophys Res 107(B9):2193. doi: 10.1029/2001JB000576 Google Scholar
  44. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi: 10.1029/2005GL025285 Google Scholar
  45. Swenson S, Chambers D, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res 113:B08410. doi: 10.1029/2007JB005338 CrossRefGoogle Scholar
  46. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi: 10.1029/2004GL019920 CrossRefGoogle Scholar
  47. Tosi N, Sabadini R, Marotta AM (2005) Simultaneous inversion for the earth’s mantle viscosity and ice mass imbalance in Antarctica and Greenland. J Geophys Res 110:B07402. doi: 10.1029/2004JB003236 CrossRefGoogle Scholar
  48. van Angelen JH, van den Broeke MR, Wouters B, Lenaerts JTM (2014) Contemporary (1960–2012) evolution of the climate and surface mass balance of the Greenland ice sheet. Surv Geophys 35:1155–1174. doi: 10.1007/s10712-013-9261-z CrossRefGoogle Scholar
  49. van de Berg WJ, van den Broeke MR, Reijmer CH, van Meijgaard E (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J Geophys Res 111:D11104. doi: 10.1029/2005JD006495 CrossRefGoogle Scholar
  50. van den Broeke MR, Enderlin EM, Howat IM, Munneke PK, Noël BYP, van de Berg WJ, van Meijgaard E, Wouters B (2016) On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere 10:1933–1946. doi: 10.5194/tc-10-1933-2016 CrossRefGoogle Scholar
  51. Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503. doi: 10.1029/2009GL040222 CrossRefGoogle Scholar
  52. Velicogna I, Wahr J (2006) Measurements of time-variable gravity show mass loss in Antarctica. Science 311:1754–1756. doi: 10.1126/science.1123785 CrossRefGoogle Scholar
  53. Velicogna I, Wahr J (2013) Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophys Res Lett 40:3055–3063. doi: 10.1002/grl.50527 CrossRefGoogle Scholar
  54. Wahr J, Molenaar M, Bryan F (1998) Time variability of the earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229. doi: 10.1029/98JB02844 CrossRefGoogle Scholar
  55. Wahr J, Nerem RS, Bettadpur S (2015) The pole tide and its effect on GRACE time-variable gravity measurements: implications for estimates of surface mass variations. J Geophys Res Solid Earth 120(6):4597–4615. doi: 10.1002/2015JB011986 CrossRefGoogle Scholar
  56. Watkins MM, Yuan D-N (2014) JPL Level-2 processing standards document. Jet Propulsion Laboratory, California Institute of Technology, PasadenaGoogle Scholar
  57. Weigelt M, van Dam T, Jäggi A, Prange L, Tourian MJ, Keller W, Sneeuw N (2013) Time-varity gravity signal in Greenland revealed by high-low satellite-to-satellite tracking. J Geophys Res 118:3848–3859. doi: 10.1002/jgrb.50283 CrossRefGoogle Scholar
  58. Whitehouse PL, Bentley MJ, Milne GA, King MA, Thomas ID (2012) A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys J Int 180:1464–1482. doi: 10.1111/j.1365-246X.2012.05557.x CrossRefGoogle Scholar
  59. Wouters B, Bamber JL, van den Broeke MR, Lenaerts JTM, Sasgen I (2013) Limits in detecting acceleration of ice sheet mass loss to climate variability. Nat Geosci. doi: 10.1038/NGEO1874 Google Scholar
  60. Zehentner N, Mayer-Gürr T (2015) SST-hl: Time variable gravity from multiple non-dedicated satellites. In: EGU General Assembly Conference Abstracts, vol 17. EGU General Assembly Conference Abstracts, p 10613Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Matthieu J. Talpe
    • 1
    Email author
  • R. Steven Nerem
    • 1
  • Ehsan Forootan
    • 2
  • Michael Schmidt
    • 3
  • Frank G. Lemoine
    • 4
  • Ellyn M. Enderlin
    • 5
  • Felix W. Landerer
    • 6
  1. 1.Aerospace Engineering SciencesUniversity of Colorado Boulder, Colorado Center for Astrodynamics ResearchBoulderUSA
  2. 2.School of Earth and Ocean SciencesCardiff UniversityCardiffUK
  3. 3.Deutsches Geodätisches Forschungsinstitut (DGFI)Technische Universität MünchenMunichGermany
  4. 4.Planetary Geodynamics LaboratoryNASA Goddard Space Flight CenterGreenbeltUSA
  5. 5.Climate Change InstituteUniversity of MaineOronoUSA
  6. 6.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations