Journal of Geodesy

, Volume 91, Issue 8, pp 915–931 | Cite as

IRNSS/NavIC and GPS: a single- and dual-system L5 analysis

  • S. Zaminpardaz
  • P. J. G. Teunissen
  • N. Nadarajah
Original Article


The Indian Regional Navigation Satellite System (IRNSS) has recently (May 2016) become fully operational. In this contribution, for the fully operational IRNSS as a stand-alone system and also in combination with GPS, we provide a first assessment of L5 integer ambiguity resolution and positioning performance. While our empirical analyses are based on the data collected by two JAVAD receivers at Curtin University, Perth, Australia, our formal analyses are carried out for various onshore locations within the IRNSS service area. We study the noise characteristics (carrier-to-noise density, measurement precision, time correlation), the integer ambiguity resolution performance (success rates and ambiguity dilution of precision), and the positioning performance (ambiguity float and ambiguity fixed). The results show that our empirical outcomes are consistent with their formal counterparts and that the GPS L5-data have a lower noise level than that of IRNSS L5-data, particularly in case of the code data. The underlying model in our assessments varies from stand-alone IRNSS (L5) to IRNSS \(+\) GPS (L5), from unconstrained to height-constrained and from kinematic to static. Significant improvements in ambiguity resolution and positioning performance are achievable upon integrating L5-data of IRNSS with GPS.


Indian Regional Navigation Satellite System (IRNSS) Navigation with Indian Constellation (NavIC) GPS block IIF Integer ambiguity resolution ADOP 



This work has been done in the context of the Positioning Program Project 1.19 “Multi-GNSS PPP-RTK Network” of the Cooperative Research Centre for Spatial Information (CRC-SI). The second author is the recipient of an Australian Research Council (ARC) Federation Fellowship (Project number FF0883188). This support is gratefully acknowledged.


  1. Amiri-Simkooei AR, Tiberius CCJM (2007) Assessing receiver noise using GPS short baseline time series. GPS Solut 11(1):21–35CrossRefGoogle Scholar
  2. Amiri-Simkooei AR, Teunissen PJG, Tiberius CCJM (2009) Application of least-squares variance component estimation to GPS observables. J Surv Eng 135(4):149–160CrossRefGoogle Scholar
  3. Babu R, Mula P, Ratnakara SC, Ganeshan AS (2015) IRNSS satellite parameter estimation using combination strategy. Glob J Sci Front Res 15(3):87–95Google Scholar
  4. Bensky A (2016) Wireless positioning technologies and applications. Artech House, LondonGoogle Scholar
  5. Chandrasekhar MV, Rajarajan D, Satyanarayana G, Tirmal N, Rathnakara SC, Ganeshan AS (2015) Modernized IRNSS broadcast ephemeris parameters. Control Theory Inf 5(2):1–9Google Scholar
  6. de Bakker PF, Tiberius CCJM, van der Marel H, van Bree RJP (2012) Short and zero baseline analysis of GPS L1 C/A, L5Q, GIOVE E1B, and E5aQ signals. GPS Solut 16(1):53–64CrossRefGoogle Scholar
  7. Euler HJ, Goad CC (1991) On optimal filtering of GPS dual frequency observations without using orbit information. Bull Geod 65(2):130–143CrossRefGoogle Scholar
  8. Ganeshan AS, Ratnakara SC, Srinivasan N, Rajaram B, Tirmal N, Kartik A (2015) First position fix with IRNSS, Inside GNSS, pp 48–52. Accessed 19 Apr 2016
  9. Godha S, Cannon M (2007) GPS/MEMS INS integrated system for navigation in urban areas. GPS Solut 11(3):193–203CrossRefGoogle Scholar
  10. GPS Directorate (2011) Navstar GPS space segment/user segment L5 interfaces (IS-GPS-705B). Technical reportGoogle Scholar
  11. GPS World (2016) First GPS III satellite completes critical test., published 19 Jan 2016, Accessed 9 Aug 2016
  12. Hofmann-Wellenhof B, Lichtenegger H, Collins J (2013) Global positioning system: theory and practice. Springer, BerlinGoogle Scholar
  13. ISRO (2014a) INDIAN REGIONAL NAVIGATION SATELLITE SYSTEM: signal in space ICD for standard positioning service, version 1.0. ISRO Satellite Centre, June 2014Google Scholar
  14. ISRO (2014b) PSLV-C22/IRNSS-1A. Accessed 1 Sep 2015
  15. ISRO (2014c) PSLV-C24/IRNSS-1B. Published Mar 2014, Accessed 1 Sept 2015
  16. ISRO (2015) PSLV-C27/IRNSS-1D. . Published Mar 2015, Accessed 1 Sept 2015
  17. ISRO (2016a) PSLV-C31/IRNSS-1E. Published Jan 2016, Accessed 19 Apr 2016
  18. ISRO (2016b) PSLV-C32/IRNSS-1F. Published Mar 2016, Accessed 19 Apr 2016
  19. ISRO (2016c) PSLV-C33/IRNSS-1G. Published Apr 2016, Accessed 1 June 2016
  20. Kumari A, Samal K, Rajarajan D, Swami U, Babu R, Kartik A, Rathnakara SC, Ganeshan AS (2015) Precise modeling of solar radiation pressure for IRNSS satellite. J Nat Sci Res 5(3):35–43Google Scholar
  21. Lockheed Martin (2013) Lockheed Martin powers on the first GPS III satellite. Published 28 Feb 2013, Accessed 9 Aug 2016
  22. Marquis W, Shaw M (2016) GPS III: bringing new capabilities to the global community. Inside GNSS, pp 34–48. Accessed 9 Aug 2016
  23. Montenbruck O, Steigenberger SR (2015) IRNSS orbit determination and broadcast ephemeris assessment. In: Proceedings of the 2015 international technical meeting of the Institute of Navigation, Dana Point, California, January 2015, pp 185–193Google Scholar
  24. Mozo GA, Piriz R, Lainez SMD, Romay MMM (2010) Multisystem real time precise-point-positioning, today with GPS+GLONASS in the near future also with QZSS, Galileo, Compass, IRNSS. In: International symposium on GPS/GNSS, Taipei, Taiwan, October 2010Google Scholar
  25. Nadarajah N, Khodabandeh A, Teunissen PJG (2015) Assessing the IRNSS L5-signal in combination with GPS, Galileo, and QZSS L5/E5a-signals for positioning and navigation. GPS Solut 20(2):289–297Google Scholar
  26. Odijk D, Teunissen PJG (2008) ADOP in closed form for a hierarchy of multi-frequency single-baseline GNSS models. J Geod 82(8):473–492CrossRefGoogle Scholar
  27. Odijk D, Teunissen PJG (2013) Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution. GPS Solut 17(4):521–533Google Scholar
  28. Odijk D, Teunissen PJG, Huisman L (2012) First results of mixed GPS+GIOVE single-frequency RTK in Australia. J Spat Sci 57(1):3–18CrossRefGoogle Scholar
  29. Odijk D, Nadarajah N, Zaminpardaz S, Teunissen PJG (2016) GPS, Galileo, BDS, QZSS and IRNSS differential ISBs estimation and application. GPS Solut. doi: 10.1007/s10291-016-0536-y
  30. Odolinski R, Teunissen PJG (2016) Single-frequency, dual-GNSS versus dual-frequency, single-GNSS a low-cost and high-grade receivers GPS-BDS RTK analysis. J Geod. doi: 10.1007/s00190-016-0921-x Google Scholar
  31. Rao VG (2013) Proposed LOS fast TTFF signal design for IRNSS. Ph.D thesis. University of CalgaryGoogle Scholar
  32. Rethika T, Mishra S, Nirmala S, Rathnakara SC, Ganeshan AS (2013) Single frequency ionospheric error correction using coefficients generated from regional ionospheric data for IRNSS. Indian J Radio Space Phys 42:125–130Google Scholar
  33. Sarma AD, Sultana Q, Srinivas VS (2010) Augmentation of Indian regional navigation satellite system to improve dilution of precision. J Navig 63(02):313–321CrossRefGoogle Scholar
  34. Sekar SB, Sengupta S, Bandyopadhyay K (2012) Spectral compatibility of BOC (5, 2) modulation with existing GNSS signals. In: Position location and navigation symposium (PLANS), 2012 IEEE/ION, IEEE, pp 886–890Google Scholar
  35. Tegedor J, Øvstedal O (2014) Triple carrier precise point positioning (PPP) using GPS L5. Surv Rev 46(337):288–297CrossRefGoogle Scholar
  36. Teunissen PJG (1990) GPS op afstand bekeken In: een halve eeuw in de goede richting . Lustrumboek Snellius 1985–1990, DUM Delft pp 215–233Google Scholar
  37. Teunissen PJG (1997) A canonical theory for short GPS baselines. Part I: the baseline precision. J Geod 71(6):320–336CrossRefGoogle Scholar
  38. Teunissen PJG (1998a) A proof of Nielsen’s conjecture on the relationship between dilution of precision for point positioning and for relative positioning with GPS. IEEE Aerosp Electron Syst 34(2):693–695CrossRefGoogle Scholar
  39. Teunissen PJG (1998b) Success probability of integer GPS ambiguity rounding and bootstrapping. J Geod 72(10):606–612CrossRefGoogle Scholar
  40. Teunissen PJG (1999) An optimality property of the integer least-squares estimator. J Geod 73(11):587–593CrossRefGoogle Scholar
  41. Teunissen PJG, Amiri-Simkooei AR (2008) Least-squares variance component estimation. J Geod 82(2):65–82CrossRefGoogle Scholar
  42. Teunissen PJG, Odolinski R, Odijk D (2014) Instantaneous BeiDou+ GPS RTK positioning with high cut-off elevation angles. J Geod 88(4):335–350CrossRefGoogle Scholar
  43. Thoelert S, Montenbruck O, Meurer M (2014) IRNSS-1A: signal and clock characterization of the Indian regional navigation system. GPS Solut 18(1):147–152CrossRefGoogle Scholar
  44. Verhagen S, Teunissen PJG (2014) Ambiguity resolution performance with GPS and BeiDou for LEO formation flying. Adv Space Res 54(5):830–839CrossRefGoogle Scholar
  45. Zaminpardaz S, Teunissen PJG, Nadarajah N (2016a) GLONASS CDMA L3 ambiguity resolution and positioning. GPS Solut. doi: 10.1007/s10291-016-0544-y Google Scholar
  46. Zaminpardaz S, Teunissen PJG, Nadarajah N (2016) IRNSS stand-alone positioning: first results in Australia. J Spat Sci 61(1):5–27. doi: 10.1080/14498596.2016.1142398 CrossRefGoogle Scholar
  47. Zhu J, Santerre R (2002) Improvement of GPS phase ambiguity resolution using prior height information as a quasi-observation. Geomatica 56(3):211–221Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • S. Zaminpardaz
    • 1
  • P. J. G. Teunissen
    • 1
    • 2
  • N. Nadarajah
    • 1
  1. 1.Department of Spatial Sciences, GNSS Research CentreCurtin UniversityPerthAustralia
  2. 2.Department of Geoscience and Remote SensingDelft University of TechnologyDelftThe Netherlands

Personalised recommendations