Advertisement

Journal of Geodesy

, Volume 91, Issue 2, pp 167–194 | Cite as

Spherical integral transforms of second-order gravitational tensor components onto third-order gravitational tensor components

  • Michal ŠprlákEmail author
  • Pavel Novák
Original Article

Abstract

New spherical integral formulas between components of the second- and third-order gravitational tensors are formulated in this article. First, we review the nomenclature and basic properties of the second- and third-order gravitational tensors. Initial points of mathematical derivations, i.e., the second- and third-order differential operators defined in the spherical local North-oriented reference frame and the analytical solutions of the gradiometric boundary-value problem, are also summarized. Secondly, we apply the third-order differential operators to the analytical solutions of the gradiometric boundary-value problem which gives 30 new integral formulas transforming (1) vertical-vertical, (2) vertical-horizontal and (3) horizontal-horizontal second-order gravitational tensor components onto their third-order counterparts. Using spherical polar coordinates related sub-integral kernels can efficiently be decomposed into azimuthal and isotropic parts. Both spectral and closed forms of the isotropic kernels are provided and their limits are investigated. Thirdly, numerical experiments are performed to test the consistency of the new integral transforms and to investigate properties of the sub-integral kernels. The new mathematical apparatus is valid for any harmonic potential field and may be exploited, e.g., when gravitational/magnetic second- and third-order tensor components become available in the future. The new integral formulas also extend the well-known Meissl diagram and enrich the theoretical apparatus of geodesy.

Keywords

Boundary-value problem Differential operators Gravitational tensor Gravitational gradient Integral transform Meissl diagram 

Notes

Acknowledgments

The authors were supported by the project No. GA15-08045S of the Czech Science Foundation. Thoughtful and constructive comments of the three anonymous reviewers are gratefully acknowledged. Thanks are also extended to the editor-in-chief Prof. Jürgen Kusche and the responsible editor Prof. Wolfgang Keller for handling our manuscript.

Supplementary material

190_2016_951_MOESM1_ESM.pdf (28 kb)
Supplementary material 1 (pdf 27 KB)

Supplementary material 2 (mpeg 7694 KB)

Supplementary material 3 (mpeg 8000 KB)

References

  1. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Tenth Printing, National Bureau of Standards, Department of Commerce, Washington DC, USA, p 1046Google Scholar
  2. Ardalan AA, Grafarend EW (2004) High-resolution regional geoid computation without applying Stokes’s formula: a case study of the Iranian geoid. J Geodesy 78:138–156Google Scholar
  3. Arfken GB, Weber HJ (2005) Mathematical methods for physicists, 6th edn. Elsevier Academic Press, New York, p 1182Google Scholar
  4. Balakin AB, Daishev RA, Murzakhanov ZG, Skochilov AF (1997) Laser-interferometric detector of the first, second and third derivatives of the potential of the Earth gravitational field. Izvestiya vysshikh uchebnykh zavedenii, seriya Geologiya i Razvedka 1:101–107Google Scholar
  5. Bell RE, Anderson RN, Pratson LF (1997) Gravity gradiometry resurfaces. Lead Edge 16:55–60CrossRefGoogle Scholar
  6. Bölling C, Grafarend EW (2005) Ellipsoidal spectral properties of the Earth’s gravitational potential and its first and second derivatives. J Geodesy 79:300–330CrossRefGoogle Scholar
  7. Brieden P, Müller J, Flury J, Heinzel G (2010) The mission OPTIMA -novelties and benefit. Geotechnologien, Science Report no. 17, Potsdam, Germany, pp. 134–139Google Scholar
  8. Chauvenet W (1875) A treatise on plane and spherical trigonometry, 9th edn. JB Lippincott & Co., Philadelphia, p 270Google Scholar
  9. DiFrancesco D, Meyer TJ, Christensen A, FitzGerald D (2009) Gravity gradiometry—today and tomorrow. In: 11th SAGA Biennial Technical Meeting and Exhibition, September 13–18, 2009. Swaziland, South Africa, pp 80–83Google Scholar
  10. Denker H (2003) Computation of gravity gradients for Europe for calibration/validation of GOCE data. In: Tziavos IN (ed) Gravity and Geoid 2002, 3rd Meeting of the International Gravity and Geoid Commission, August 26–30 2002. Thessaloniki, Greece, Ziti Publishing, Thessaloniki, Greece, pp 287–292Google Scholar
  11. Douch K, Panet I, Pajot-Métivier G, Christophe B, Foulon B, Lequentrec-Lalancette M-F, Diament M (2015) Error analysis of a new planar electrostatic gravity gradiometer for airborne surveys. J Geodesy 89:1217–1231CrossRefGoogle Scholar
  12. Dransfield M (2007) Airborne gravity gradiometry in the search for mineral deposits. In: Milkereit B (ed) Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, September 9–12, 2007. Canada, Toronto, pp 341–354Google Scholar
  13. Eötvös L (1896) Untersuchungen über gravitation und erdmagnetismus. Annalen der Physik und Chemie, Neue Folge 59:354–400CrossRefGoogle Scholar
  14. ESA (1999) Gravity field and steady-state ocean circulation mission. In: Reports for mission selection, ESA SP-1233(1)—the four candidate earth explorer core missions, ESA Publication Division, ESTEC, Noordwijk, The Netherlands, p 217Google Scholar
  15. Eshagh M (2008) Non-singular expressions for the vector and the gradient tensor of gravitation in a geocentric spherical frame. Comput Geosci 34:1762–1768CrossRefGoogle Scholar
  16. Eshagh M (2011a) On integral approach to regional gravity field modelling from satellite gradiometric data. Acta Geophys 59:29–54Google Scholar
  17. Eshagh M (2011b) The effect of spatial truncation error on the integral inversion of satellite gravity gradiometry data. Adv Space Res 45:1238–1247CrossRefGoogle Scholar
  18. Eshagh M, Ghorbannia M (2013) The use of Gaussian equations of motions of a satellite for local gravity anomaly recovery. Adv Space Res 52:30–38CrossRefGoogle Scholar
  19. Eshagh M, Šprlák M (2016) On the integral inversion of satellite-to-satellite velocity differences for local gravity field recovery: a theoretical study. Celest Mech Dyn Astron 124:127–144CrossRefGoogle Scholar
  20. Fixler JB (2003) Atom interferometer-based gravity gradiometer measurements. Doctoral Thesis, Faculty of Graduate School, Yale University, New Haven, Connecticut, USA, p 138Google Scholar
  21. Garcia RV (2002) Local geoid determination from GRACE mission. Report No. 460, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus, Ohio, USA, p 106Google Scholar
  22. Ghobadi-Far K, Sharifi MA, Sneeuw N (2016) 2D Fourier series representation of gravitational functionals in spherical coordinates. J Geodesy 90:871–881CrossRefGoogle Scholar
  23. Grafarend EW (2001) The spherical horizontal and spherical vertical boundary value problem—vertical deflections and geoid undulations - the completed Meissl diagram. J Geodesy 75:363–390CrossRefGoogle Scholar
  24. Grafarend EW, Heck B, Knickmeyer EH (1985) The free versus fixed geodetic boundary value problem for different combinations of geodetic observables. Bull Géodésique 59:11–32CrossRefGoogle Scholar
  25. Haagmans R, de Min E, van Gelderen M (1993) Fast evaluation of convolution integral on the sphere using 1D-FFT and a comparison with existing methods for Stokes integral. Manuscr Geod 18:227–241Google Scholar
  26. Heck B (1979) Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten. Deutsche Geodätische Kommission, Reihe C, Nr. 259, München, GermanyGoogle Scholar
  27. Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman and Co., San Francisco, USA, p 364Google Scholar
  28. Hotine M (1969) Mathematical geodesy. Environmental science services administration, monograph no. 2, US Department of Commerce, Washington DC, USA, p 416Google Scholar
  29. Huang J, Vaníček P, Novák P (2000) An alternative algorithm to FFT for the numerical evaluation of Stokes’s integral. Stud Geophys Geod 44:374–380CrossRefGoogle Scholar
  30. Jekeli C (1988) The gravity gradiometer survey system (GGSS). Eos Trans Am Geophys Union 69:105–117Google Scholar
  31. Jekeli C (1993) A review of gravity gradiometer survey system data analyses. Geophysics 58:508–514CrossRefGoogle Scholar
  32. Jekeli C (2007) Potential theory and static gravity field of the Earth. In: Schubert G (ed) Treatise on geophysics, vol 3. Elsevier, Oxford, pp 11–42CrossRefGoogle Scholar
  33. Kellogg OD (1929) Foundations of potential theory. Verlag von Julius Springer, Berlin 384 pCrossRefGoogle Scholar
  34. Kern M, Haagmans R (2005) Determination of gravity gradients from terrestrial gravity data for calibration and validation of gradiometric data. In: Jekeli C, Bastos L, Fernandes L (eds) Gravity, geoid and space missions, IAG symposia series, vol 129. Springer-Verlag, Berlin, pp 95–100CrossRefGoogle Scholar
  35. Klopping FJ, Billson RM, Niebauer TM (2014) Interferometric differential gradiometer apparatus and method. United States Patent, Patent no. US 20140026654 A1, Washington DC, USAGoogle Scholar
  36. Koch KR (1971) Die geodätische Randwertaufgabe bei bekannter Erdoberfläche. Zeitschrift für Vermessungswesen 96:218–224Google Scholar
  37. Lelgemann D (1976) On the recovery of gravity anomalies from high precision altimeter data. Report No. 239, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, Ohio, USA, p 52Google Scholar
  38. Li J (2002) A formula for computing the gravity disturbance from the second radial derivative of the disturbing potential. J Geodesy 76:226–231CrossRefGoogle Scholar
  39. Li J (2005) Integral formulas for computing the disturbing potential, gravity anomaly and the deflection of the vertical from the second-order radial gradient of the disturbing potential. J Geodesy 79:64–70CrossRefGoogle Scholar
  40. Luying C, Houze X (2006) General inverse of Stokes, Vening-Meinesz and Molodensky formulae. Sci China Ser D Earth Sci 49:499–504CrossRefGoogle Scholar
  41. Martinec Z (2003) Green’s function solution to spherical gradiometric boundary-value problems. J Geodesy 77:41–49CrossRefGoogle Scholar
  42. McGuirk JM, Foster GT, Fixler JB, Snadden MJ, Kasevich MA (2002) Sensitive absolute-gravity gradiometry using atom interferometry. Phys Rev A 65:033608, p 13Google Scholar
  43. Meissl P (1971) A study of covariance functions related to the Earth’s disturbing potential. Report No. 151, Department of Geodetic Science, The Ohio State University, Columbus, Ohio, USA, p 86Google Scholar
  44. Meyer TJ (2013) Gravity sensing instrument. United States Patent, Patent no. US 8359920 B2, Washington DC, USAGoogle Scholar
  45. Molodensky MS, Eremeev VF, Yurkina MI (1962) Methods for study of the external gravitational field and figure of the Earth. The Israel Program for Scientific Translations, Department of Commerce, Washington DC, USA, p 248Google Scholar
  46. Moritz H (1967) Kinematical geodesy. Report no. 92, Department of Geodetic Science, Ohio State University, Columbus, Ohio, USA, p 65Google Scholar
  47. Moritz H (1989) Advanced physical geodesy, 2nd edn. Herbert Wichmann Verlag, Karlsruhe 500 pGoogle Scholar
  48. Moritz H (2000) Geodetic reference system 1980. J Geodesy 74:128–133CrossRefGoogle Scholar
  49. Novák P (2007) Integral inversion of SST data of type GRACE. Stud Geophys Geod 51:351–367CrossRefGoogle Scholar
  50. Novák P, Austen G, Sharifi MA, Grafarend EW (2006) Mapping Earth’s gravitation using GRACE data. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the earth system from space. Springer-Verlag, Berlin Heidelberg, pp 149–164CrossRefGoogle Scholar
  51. Pavlis  NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res (Solid Earth) 117:B04406, p 38Google Scholar
  52. Petrovskaya MS, Zielinski JB (1997) Determination of the global and regional gravitational fields from satellite and balloon gradiometry missions. Adv Space Res 19:1723–1728CrossRefGoogle Scholar
  53. Pick M, Pícha J, Vyskočil V (1973) Theory of the Earth’s gravity field. Elsevier, Amsterdam 538 pGoogle Scholar
  54. Pizzetti P (1911) Sopra il calcolo teorico delle deviazioni del geoide dall’ ellissoide. Atti della Reale Accademia della Scienze di Torino 46:331–350Google Scholar
  55. Reed GB (1973) Application of kinematical geodesy for determining the short wavelength components of the gravity field by satellite gradiometry. Report No. 201, Ohio State University, Department of Geodetic Sciences, Columbus, USA, p 164Google Scholar
  56. Rothleitner C (2013) Interferometric differential free-fall gradiometer. United States Patent, Patent no. US 20130205894 A1, Washington DC, USAGoogle Scholar
  57. Rothleitner C, Francis O (2014) Measuring the Newtonian constant of gravitation with a differential free-fall gradiometer: a feasibility study. Rev Sci Instrum 85: 044501, p 14Google Scholar
  58. Rosi G, Cacciapuoti L, Sorrentino F, Menchetti M, Prevedelli M, Tino GM (2015) Measurements of the gravity-field curvature by atom interferometry. Phys Rev Lett 114:013001, p 5Google Scholar
  59. Rummel R (2010) GOCE: gravitational gradiometry in a satellite. In: Freeden W, Nashed ZM, Sonar T (eds) Handbook of geomathematics. Springer-Verlag, Berlin, pp 93–103CrossRefGoogle Scholar
  60. Rummel R, van Gelderen M (1995) Meissl scheme—spectral characteristics of physical geodesy. Manuscr Geod 20:379–385Google Scholar
  61. Rummel R, Sjöberg LE, Rapp R (1978) The determination of gravity anomalies from geoid heights using the inverse Stokes’ formula, Fourier transforms, and least squares collocation. NASA Contract Report 141442, Department of Geodetic Science, The Ohio State University, Columbus, Ohio, USA, p 65Google Scholar
  62. Rummel R, van Gelderen M, Koop R, Schrama E, Sansó F, Brovelli M, Miggliaccio F, Sacerdote F (1993) Spherical harmonic analysis of satellite gradiometry. Report no. 39, Publications on Geodesy, New Series, Netherlands Geodetic Commission, Delft, The Netherlands, p 124Google Scholar
  63. Simmonds JG (1994) A brief on tensor analysis. Undergraduate texts in mathematics, 2nd edn. Springer-Verlag, New York, p 112CrossRefGoogle Scholar
  64. Sorrentino F, Bodart Q, Cacciapuoti L, Lien Y-H, Prevedelli M, Rosi G, Salvi L, Tino GM (2014) Sensitivity limits of a Raman atom interferometer as a gravity gradiometer. Phys Rev 89:023607, p 14Google Scholar
  65. Stokes GG (1849) On the variation of gravity on the surface of the Earth. Trans Camb Philos Soc 8:672–695Google Scholar
  66. Sünkel H (1981) Feasibility studies for the prediction of the gravity disturbance vector in high altitudes. Report No. 311, Department of Geodetic Science, The Ohio State University, Columbus, Ohio, USA, p 53Google Scholar
  67. Šprlák M, Novák P (2014a) Integral transformations of deflections of the vertical onto satellite-to-satellite tracking and gradiometric data. J Geodesy 88:643–657CrossRefGoogle Scholar
  68. Šprlák M, Novák P (2014b) Integral transformations of gradiometric data onto GRACE type of observable. J Geodesy 88:377–390CrossRefGoogle Scholar
  69. Šprlák M, Novák P (2015) Integral formulas for computing a third-order gravitational tensor from volumetric mass density, disturbing gravitational potential, gravity anomaly and gravity disturbance. J Geodesy 89:141–157CrossRefGoogle Scholar
  70. Šprlák M, Novák P (2016) Spherical gravitational curvature boundary-value problem. J Geodesy 90:727–739CrossRefGoogle Scholar
  71. Šprlák M, Hamáčková E, Novák P (2015) Alternative validation method of satellite gradiometric data by integral transform of satellite altimetry data. J Geodesy 89:757–773CrossRefGoogle Scholar
  72. Šprlák M, Novák P, Pitoňák M (2016) Spherical harmonic analysis of gravitational curvatures and its implications for future satellite missions. Surveys Geophy 37:681–700CrossRefGoogle Scholar
  73. Šprlák M, Sebera J, Vaľko M, Novák P (2014) Spherical integral formulas for upward/downward continuation of gravitational gradients onto gravitational gradients. J Geodesy 88:179–197CrossRefGoogle Scholar
  74. Thalhammer M (1995) Regionale Gravitationsfeldbestimmung mit zukünftigen Satellitenmissionen (SST und Gradiometrie). Deutsche Geodätische Kommission, Reihe C, Nr. 437, München, GermanyGoogle Scholar
  75. Tóth G (2003) The Eötvös spherical horizontal gradiometric boundary value problem—gravity anomalies from gravity gradients of the torsion balance. In: Tziavos IN (ed) Gravity and Geoid 2002, 3rd Meeting of the International Gravity and Geoid Commission, August 26–30 2002. Thessaloniki, Greece, Ziti Publishing, Thessaloniki, Greece, pp 102–107Google Scholar
  76. Tóth G (2005) The gradiometric-geodynamic boundary value problem. In: Jekeli C, Bastos L, Fernandes L (eds) Gravity, geoid and space missions, IAG Symposia, vol 129. Springer-Verlag Berlin, Germany, pp 352–357Google Scholar
  77. Tóth G, Földváry L, Tziavos IN, Ádám J (2006) Upward/downward continuation of gravity gradients for precise geoid determination. Acta Geod Geophys Hung 41:21–30Google Scholar
  78. Tóth G, Ádám J, Földváry L, Tziavos IN, Denker H (2005) Calibration/validation of GOCE data by terrestrial torsion balance observations. In: Sansó F (ed) A window on the future geodesy, IAG Symposia Series, vol 128. Springer-Verlag Berlin, Germany, pp 214–219Google Scholar
  79. van Gelderen M, Rummel R (2001) The solution of the general geodetic boundary value problem by least squares. J Geodesy 75:1–11CrossRefGoogle Scholar
  80. Vaníček P, Krakiwsky EJ (1986) Geodesy: the concepts, 2nd edn. Elsevier Science Publishers B.V., Amsterdam, p 697Google Scholar
  81. Vening-Meinesz FA (1928) A formula expressing the deflection of the plumb-lines in the gravity anomalies and some formulae for the gravity field and the gravity potential outside the geoid. Koninklijke Nederlandsche Akademie van Wetenschappen 31:315–331Google Scholar
  82. Winch DE, Roberts PH (1995) Derivatives of addition theorem for Legendre functions. J Aust Math Soc Ser B Appl Math 37:212–234CrossRefGoogle Scholar
  83. Wolf KI (2007) Kombination globaler Potentialmodelle mit terrestrische Schweredaten für die Berechnung der zweiten Ableitungen des Gravitationspotentials in Satelitenbahnhöhe. Deutsche Geodätische Kommission, Reihe C, Nr. 603, München, GermanyGoogle Scholar
  84. Wolf KI, Denker H (2005) Upward continuation of ground data for GOCE calibration. In: Jekeli C, Bastos L, Fernandes L (eds) Gravity, geoid and space missions, IAG symposia series, vol 129. Springer-Verlag, Berlin, pp 60–65CrossRefGoogle Scholar
  85. Zhang C (1993) Recovery of gravity information from satellite altimetry data and associated forward geopotential models. UCGE Report No. 20058, University of Calgary, Calgary, Canada, p 160Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.NTIS-New Technologies for the Information Society, Faculty of Applied SciencesUniversity of West BohemiaPlzeňCzech Republic

Personalised recommendations