Advertisement

Journal of Geodesy

, Volume 91, Issue 7, pp 849–856 | Cite as

Observation of the Earth’s nutation by the VLBI: how accurate is the geophysical signal

  • César Gattano
  • Sébastien B. Lambert
  • Christian Bizouard
Original Article

Abstract

We compare nutation time series determined by several International VLBI Service for geodesy and astrometry (IVS) analysis centers. These series were made available through the International Earth Rotation and Reference Systems Service (IERS). We adjust the amplitudes of the main nutations, including the free motion associated with the free core nutation (FCN). Then, we discuss the results in terms of physics of the Earth’s interior. We find consistent FCN signals in all of the time series, and we provide corrections to IAU 2000A series for a number of nutation terms with realistic errors. It appears that the analysis configuration or the software packages used by each analysis center introduce an error comparable to the amplitude of the prominent corrections. We show that the inconsistencies between series have significant consequences on our understanding of the Earth’s deep interior, especially for the free inner core resonance: they induce an uncertainty on the FCN period of about 0.5 day, and on the free inner core nutation (FICN) period of more than 1000 days, comparable to the estimated period itself. Though the FCN parameters are not so much affected, a 100 % error shows up for the FICN parameters and prevents from geophysical conclusions.

Keywords

VLBI Earth rotation Nutation Free core nutation (FCN) Free inner core nutation (FICN) 

References

  1. Belda S, Ferrándiz JM, Heinkelmann R, Nilsson T, Schuh H (2016) Testing a new free core nutation empirical model. J Geodyn 94:59–67CrossRefGoogle Scholar
  2. Bizouard C, Gambis D (2009) The combined solution c04 for earth orientation parameters consistent with international terrestrial reference frame 2005. In: Geodetic reference frames. Springer, Berlin, pp 265–270Google Scholar
  3. Böckmann S, Artz T, Nothnagel A, Tesmer V (2007) Comparison and combination of consistent VLBI solutions. In: Proceedings of the 18th European VLBI for geodesy and astrometry working meeting, vol. 79, pp 82–87Google Scholar
  4. Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European centre for medium-range weather forecasts operational analysis data. J Geophys Res Solid Earth 111(B2). doi: 10.1029/2005JB003629
  5. Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2012) The new Vienna VLBI software VieVS. In: Geodesy for Planet Earth. Springer, Berlin, pp 1007–1011Google Scholar
  6. Capitaine N, Wallace PT, Chapront J (2003) Expressions for IAU 2000 precession quantities. Astron Astrophys 412(2):567–586CrossRefGoogle Scholar
  7. Chao BF, Hsieh Y (2015) The earth’s free core nutation: formulation of dynamics and estimation of eigenperiod from the very-long-baseline interferometry data. Earth Planet Sci Lett 432:483–492CrossRefGoogle Scholar
  8. Dehant V, Feissel-Vernier M, de Viron O, Ma C, Yseboodt M, Bizouard C (2003) Remaining error sources in the nutation at the submilliarc second level. J Geophys Res Solid Earth 108(B5). doi: 10.1029/2002JB001763
  9. Dehant V, De Viron O, Greff-Lefftz M (2005) Atmospheric and oceanic excitation of the rotation of a three-layer earth. Astron Astrophys 438(3):1149–1161CrossRefGoogle Scholar
  10. Feissel-Vernier M (2003) Selecting stable extragalactic compact radio sources from the permanent astrogeodetic VLBI program. Astron Astrophys 403(1):105–110CrossRefGoogle Scholar
  11. Feissel-Vernier M, Ma C, Gontier AM, Barache C (2005) Sidereal orientation of the earth and stability of the VLBI celestial reference frame. Astron Astrophys 438(3):1141–1148CrossRefGoogle Scholar
  12. Feissel-Vernier M, Ma C, Gontier AM, Barache C (2006) Analysis strategy issues for the maintenance of the ICRF axes. Astron Astrophys 452(3):1107–1112CrossRefGoogle Scholar
  13. Fey A, Gordon D, Jacobs C, Ma C, Gaume R, Arias E, Bianco G, Boboltz D, Böckmann S, Bolotin S et al (2015) The second realization of the international celestial reference frame by very long baseline interferometry. Astron J 150(2):58CrossRefGoogle Scholar
  14. Gattano C, Lambert S, Bizouard C (2015a) Comparison of official IVS nutation time series from VLBI analysis. In: Martins F, Boissier S, Buat V, Cambrésy L, Petit P (eds) SF2A-2015: proceedings of the annual meeting of the French Society of Astronomy and Astrophysics, pp 115–119Google Scholar
  15. Gattano C, Lambert S, Bizouard C, Souchay J (2015b) Studying impacts of strategy choices concerning the Celestial Reference Frame on the estimates of nutation time series during geodesic VLBI Analysis. IAU Gen Assem 22:2252261Google Scholar
  16. Gipson J (2007) Incorporating correlated station dependent noise improves VLBI estimates. In: Proceedings of the 18th European VLBI for geodesy and astrometry working meeting, Austria, Vienna, pp 12–13Google Scholar
  17. Gwinn CR, Herring TA, Shapiro II (1986) Geodesy by radio interferometry: studies of the forced nutations of the earth: 2. Interpretation. J Geophys Res Solid Earth 91(B5):4755–4765CrossRefGoogle Scholar
  18. Heinkelmann R, Tesmer V (2013) Systematic inconsistencies between VLBI CRF and TRF solutions caused by different analysis options. In: Reference frames for applications in geosciences. Springer, Berlin, pp 181–189Google Scholar
  19. Herring T, Gwinn C, Shapiro I (1986) Geodesy by radio interferometry: studies of the forced nutations of the earth: 1. Data analysis. J Geophys Res Solid Earth 91(B5):4745–4754CrossRefGoogle Scholar
  20. Herring TA, Buffett BA, Mathews P, Shapiro II (1991) Forced nutations of the earth: influence of inner core dynamics: 3. Very long interferometry data analysis. J Geophys Res Solid Earth 96(B5):8259–8273CrossRefGoogle Scholar
  21. Herring T, Mathews P, Buffett B (2002) Modeling of nutation-precession: very long baseline interferometry results. J Geophys Res Solid Earth 107(B4). doi: 10.1029/2001JB000165
  22. Koot L, Rivoldini A, De Viron O, Dehant V (2008) Estimation of earth interior parameters from a Bayesian inversion of very long baseline interferometry nutation time series. J Geophys Res Solid Earth 113(B8). doi: 10.1029/2007JB005409
  23. Koot L, Dumberry M, Rivoldini A, De Viron O, Dehant V (2010) Constraints on the coupling at the core-mantle and inner core boundaries inferred from nutation observations. Geophys J Int 182(3):1279–1294CrossRefGoogle Scholar
  24. Krásná H, Böhm J, Schuh H (2013) Free core nutation observed by VLBI. Astron Astrophys 555:A29CrossRefGoogle Scholar
  25. Lambert S (2006) Atmospheric excitation of the earth’s free core nutation. Astron Astrophys 457(2):717–720CrossRefGoogle Scholar
  26. Ma C, Arias E, Eubanks T, Fey A, Gontier AM, Jacobs C, Sovers O, Archinal B, Charlot P (1998) The international celestial reference frame as realized by very long baseline interferometry. Astron J 116(1):516CrossRefGoogle Scholar
  27. Malkin Z (2007) Empiric models of the earths free core nutation. Sol Syst Res 41(6):492–497CrossRefGoogle Scholar
  28. Malkin Z (2013) Free core nutation and geomagnetic jerks. J Geodyn 72:53–58CrossRefGoogle Scholar
  29. Mathews P, Buffett BA, Herring TA, Shapiro II (1991) Forced nutations of the earth: influence of inner core dynamics: 1. Theory. J Geophys Res Solid Earth 96(B5):8219–8242CrossRefGoogle Scholar
  30. Mathews P, Buffett B, Shapiro I (1995) Love numbers for a rotating spheroidal earth new definitions and numerical values. Geophys Res Lett 22(5):579–582CrossRefGoogle Scholar
  31. Mathews PM, Herring TA, Buffett BA (2002) Modeling of nutation and precession: new nutation series for nonrigid earth and insights into the earth’s interior. J Geophys Res Solid Earth 107(B4). doi: 10.1029/2001JB000390
  32. Nothnagel A, Alef W, Amagai J, Andersen PH, Andreeva T, Artz T, Bachmann S, Barache C, Baudry A, Bauernfeind E et al (2015) The IVS data input to ITRF2014. In: GFZ Data Services, Helmholtz Centre, Potsdam, Germany. doi: 10.5880/GFZ.1.1.2015.002
  33. Petit G, Luzum B (2010) IERS conventions (2010). Technical report, DTIC DocumentGoogle Scholar
  34. Romero-Wolf A, Jacobs CS, Ratcliff JT (2012) Effects of tropospheric spatio-temporal correlated noise on the analysis of space geodetic data. In: Behrend D, Baver KD (eds) Seventh general meeting (GM2012) of the international VLBI service for geodesy and astrometry (IVS), held in Madrid, Spain, March 4–9, 2012. National Aeronautics and Space Administration, pp 231–235Google Scholar
  35. Rosat S, Lambert S (2009) Free core nutation resonance parameters from VLBI and superconducting gravimeter data. Astron Astrophys 503(1):287–291Google Scholar
  36. Shaffer DB (1995) Geodesy. In: Zensus JA, Diamond PJ, Napier PJ (eds) Very long baseline interferometry and the VLBA. Astronomical society of the Pacific conference series, vol 82, p 345Google Scholar
  37. Shirai T, Fukushima T, Malkin Z (2005) Detection of phase disturbances of free core nutation of the earth and their concurrence with geomagnetic jerks. Earth Planets Space 57(2):151–155CrossRefGoogle Scholar
  38. Souchay J, Loysel B, Kinoshita H, Folgueira M (1999) Corrections and new developments in rigid earth nutation theory-iii. Final tables. Astron Astrophys Suppl Ser 135(1):111–131CrossRefGoogle Scholar
  39. Tesmer V, Boehm J, Heinkelmann R, Schuh H (2007) Effect of different tropospheric mapping functions on the TRF, CRF and position time-series estimated from VLBI. J Geod 81(6–8):409–421CrossRefGoogle Scholar
  40. Titov O, Tesmer V, Boehm J (2004) OCCAM v.6.0 software for VLBI data analysis. In: Vandenberg NR, Baver KD (eds) International VLBI service for geodesy and astrometry 2004 general meeting proceedings, p 267Google Scholar
  41. Vondrak J, Ron C (2009) Stability of period and quality factor of free core nutation. Acta Geodyn Geomater 6(3):217–224Google Scholar
  42. Vondrak J, Ron C (2016) Geophysical fluids from different data sources, geomagnetic jerks, and their impact on Earth s orientation. Acta Geodyn Geomater 13(3):241–247. doi: 10.13168/AGG.2016.0005

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, LNEParisFrance

Personalised recommendations