Advertisement

Journal of Geodesy

, Volume 91, Issue 1, pp 53–67 | Cite as

Differential geodetic stereo SAR with TerraSAR-X by exploiting small multi-directional radar reflectors

  • Christoph GisingerEmail author
  • Martin Willberg
  • Ulrich Balss
  • Thomas Klügel
  • Swetlana Mähler
  • Roland Pail
  • Michael Eineder
Original Article

Abstract

In this paper, we report on the direct positioning of small multi-directional radar reflectors, so-called octahedrons, with the synthetic aperture radar (SAR) satellite TerraSAR-X. Its highest resolution imaging mode termed staring spotlight enables the use of such octahedron reflectors with a dimension of only half a meter, but still providing backscatter equivalent to 1–2 cm observation error. Four octahedrons were deployed at Wettzell geodetic observatory, and observed by TerraSAR-X with 12 acquisitions in three different geometries. By applying our least squares stereo SAR algorithm already tested with common trihedral corner reflectors (CRs), and introducing a novel differential extension using one octahedron as reference point, the coordinates of the remaining octahedrons were directly retrieved in the International Terrestrial Reference Frame (ITRF). Contrary to our standard processing, the differential approach does not require external corrections for the atmospheric path delays and the geodynamic displacements, rendering it particularly useful for joint geodetic networks employing SAR and GNSS. In this paper, we present and discuss both methods based on results when applying them to the aforementioned Wettzell data set of the octahedrons. The comparison with the independently determined reference coordinates confirms the positioning accuracy with 2–5 cm for the standard approach, and 2–3 cm for the differential processing. Moreover, we present statistical uncertainty estimates of the observations and the positioning solutions, which are additionally provided by our parameter estimation algorithms. The results also include our 1.5 m CR available at Wettzell, and the outcomes clearly demonstrate the advantage of the multi-directional octahedrons over conventional CRs for global positioning applications with SAR.

Keywords

Synthetic aperture radar (SAR) Geolocation Differential positioning TerraSAR-X 

Notes

Acknowledgments

We thank our cooperation partner the Federal Agency for Cartography and Geodesy (BKG) for their kind allowance to install the corner reflectors at their property in Wettzell, and for their local support in maintenance. Moreover, we thank the two anonymous reviewers for their remarks which provided valuable improvements for the final version of the manuscript.

References

  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestial reference frame. J Geodesy 85:457–473. doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  2. Balss U, Cong X, Brcic R, Rexer M, Minet C, Breit H, Eineder M, Fritz T (2012) High precision measurement on the absolute localization accuracy of TerraSAR-X. In: Proceedings of IGARSS’12 Conference, July 22–27, Munich, Germany, pp 1625–1628. doi: 10.1109/IGARSS.2012.6351217
  3. Balss U, Gisinger C, Cong X, Brcic R, Steigenberger P, Eineder M, Pail R, Hugentobler U (2013) High resolution geodetic Earth observation with TerraSAR-X: Correction schemes and validation. In: Proceedings of IGARSS’13 Conference, July 21–26, Melbourne, Australia, pp 4499–4502. doi: 10.1109/IGARSS.2013.6723835
  4. Balss U, Breit H, Fritz T, Steinbrecher U, Gisinger C, Eineder M (2014a) Analysis of internal timings and clock rates of TerraSAR-X. In: Proceedings of IGARSS’14 Conference, July 13–18, Québec, Canada, pp 2671–2674. doi: 10.1109/IGARSS.2014.6947024
  5. Balss U, Gisinger C, Cong X, Brcic R, Hackel S, Eineder M (2014b) Precise measurements on absolute localization accuracy of TerraSAR-X on the base of far-distributed test sites. In: Proceedings of EUSAR 2014 Conference, June 03–05, Berlin, Germany. VDE VERLAG GMBH, Berlin, Offenbach, pp 993–996Google Scholar
  6. Bamler R, Eineder M (2005) Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems. IEEE Geosci Remote Sens Lett 2:151–155. doi: 10.1109/LGRS.2004.843203 CrossRefGoogle Scholar
  7. Cong X, Balss U, Eineder Ml, Fritz T (2012) Imaging geodesy—centimeter-level ranging accuracy with TerraSAR-X: an update. IEEE Geosci Remote Sens Lett 9:948–952. doi: 10.1109/LGRS.2012.2187042 CrossRefGoogle Scholar
  8. Cumming IG, Wong FH (2005) Digital processing of synthetic aperture radar data. Artech House, Norwood MAGoogle Scholar
  9. Dach R, Beutler G, Bock H, Fridez P, Gäde A, Hugentobler U, Jäggi A, Meindl M, Mervart L, Prange L, Schaer S, Springer T, Urschl C, Walser P (2007) Bernese GPS Software Version 5.0. Stämpfli Publications AG, BernGoogle Scholar
  10. Doerry AW, Brock BC (2009) Radar cross section of triangular trihedral reflectors with extended bottom plate. Sandia Report, SAND2009-2993, Sandia National LaboratoriesGoogle Scholar
  11. Düring R, Koudogbo FN, Weber M (2008) TerraSAR-X and TanDEM-X: revolution in spaceborne radar. Int. Arch Photogramm Remote Sens Spat Inf Serv. http://www.isprs.org/proceedings/XXXVII/congress/tc1.aspx. Accessed Jan 2016
  12. Eineder M, Minet C, Steigenberger P, Cong X, Fritz T (2011) Imaging geodesy—toward centimeter-level ranging accuracy with TerraSAR-X. IEEE Trans Geosci Remote Sens 49:661–671. doi: 10.1109/TGRS.2010.2060264 CrossRefGoogle Scholar
  13. Freeman A (1992) SAR calibration: an overview. IEEE Trans Geosci Remote Sens 30:1107–1121. doi: 10.1109/36.193786 CrossRefGoogle Scholar
  14. Fritz T, Eineder M (eds) (2013) TerraSAR-X ground segment basic product specification document. DLR, Document TX-GS-DD-3302, v1.9. http://terrasar-x.dlr.de/. Accessed Jan 2016
  15. Fritz T, Mittermayer J, Schättler B, Balzer W, Buckreuß S, Werninghaus R (eds) (2007) TerraSAR-X ground segment level 1b product format specification. DLR, Document TX-GS-DD-3307, v1.3. http://terrasar-x.dlr.de/. Accessed Jan 2016
  16. Garthwaite MC, Hazelwood M, Nancarrow S, Hislop A, Dawson JH (2015) A regional geodetic network to monitor ground surface response to resource extraction in the northern Surat Basin. Qld Aust J Earth Sci 62:469–477. doi: 10.1080/08120099.2015.1040073 CrossRefGoogle Scholar
  17. Gisinger C, Balss U, Pail R, Zhu X, Montazeri S, Gernhardt S, Eineder M (2015) Precise three-dimensional stereo localization of corner reflectors and persistent scatterers with TerraSAR-X. IEEE Trans Geosci Remote Sens 53:1782–1802. doi: 10.1109/TGRS.2014.2348859 CrossRefGoogle Scholar
  18. Hackel S, Montenbruck O, Steigenberger P, Balss U, Gisinger C, Eineder M (2016) Impact of improved satellite dynamic models on reduced-dynamic orbit determination. J Geodesy (Submitted, in revision) Google Scholar
  19. Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS global navigation satellite systems. Springer, WienGoogle Scholar
  20. Koch KR (1999) Parameter estimation and hypothesis testing in linear models. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  21. Koch KR, Kusche J (2012) Regularization of geopotential determination from satellite data by variance components. J Geodesy 76:259–268. doi: 10.1007/s00190-002-0245-x CrossRefGoogle Scholar
  22. Leberl FW (1990) Radargrammetric image processing. Artech House, Norwood MAGoogle Scholar
  23. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56:394–415. doi: 10.1007/s10236-006-0086-x CrossRefGoogle Scholar
  24. Mikhail EM, Ackermann F (1976) Observations and least squares. IEP-Dun-Donnelley, Harper and Row, New YorkGoogle Scholar
  25. Petit G, Luzum B (eds) (2010) IERS conventions (2010). Verlag des Bundesamts für Kartographie und Geodäsie. http://tai.bipm.org/iers/conv2010/conv2010.html. Accessed Jan 2016
  26. Petrov L, Boy JP (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109(B03405). doi: 10.1029/2003JB002500
  27. Schubert A, Small D, Jehle M, Meier E (2012a) COSMO-SkyMed, TerraSAR-X, and Radarsat-2 geolocation accuracy after compensation for earth-system effects. In: Proceedings of IGARSS’12 Conference, July 22–27, Munich, Germany, 3301–3304. doi: 10.1109/IGARSS.2012.6350598
  28. Schubert A, Jehle M, Small D, Meier E (2012b) Mitigation of atmospheric perturbations and solid Earth movements in a TerraSAR-X time-series. J Geodesy 86:257–270. doi: 10.1007/s00190-011-0515-6 CrossRefGoogle Scholar
  29. Schubert A, Small D, Miranda N, Geudtner D, Meier E (2015) Sentinel-1A product geolocation accuracy: commissioning phase results. Remote Sens 7:9431–9449. doi: 10.3390/rs70709431 CrossRefGoogle Scholar
  30. Ulaby FT, Dodson MC (1989) Handbook of radar scattering statistics for terrain. Artech House, Norwood MAGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christoph Gisinger
    • 1
    Email author
  • Martin Willberg
    • 1
  • Ulrich Balss
    • 2
  • Thomas Klügel
    • 3
  • Swetlana Mähler
    • 3
  • Roland Pail
    • 1
  • Michael Eineder
    • 2
    • 4
  1. 1.Chair of Astronomical and Physical GeodesyTechnische Universität MünchenMunichGermany
  2. 2.Remote Sensing Technology Institute, German Aerospace CenterOberpfaffenhofenGermany
  3. 3.Federal Agency for Cartography and GeodesyFrankfurt/MainGermany
  4. 4.Chair of Remote Sensing TechnologyTechnische Universität MünchenMunichGermany

Personalised recommendations