Journal of Geodesy

, Volume 90, Issue 12, pp 1405–1418 | Cite as

On the spectral combination of satellite gravity model, terrestrial and airborne gravity data for local gravimetric geoid computation

  • Tao Jiang
  • Yan Ming Wang
Original Article


One of the challenges for geoid determination is the combination of heterogeneous gravity data. Because of the distinctive spectral content of different data sets, spectral combination is a suitable candidate for its solution. The key to have a successful combination is to determine the proper spectral weights, or the error degree variances of each data set. In this paper, the error degree variances of terrestrial and airborne gravity data at low degrees are estimated by the aid of a satellite gravity model using harmonic analysis. For higher degrees, the error covariances are estimated from local gravity data first, and then used to compute the error degree variances. The white and colored noise models are also used to estimate the error degree variances of local gravity data for comparisons. Based on the error degree variances, the spectral weights of satellite gravity models, terrestrial and airborne gravity data are determined and applied for geoid computation in Texas area. The computed gravimetric geoid models are tested against an independent, highly accurate geoid profile of the Geoid Slope Validation Survey 2011 (GSVS11). The geoid computed by combining satellite gravity model GOCO03S and terrestrial (land and DTU13 altimetric) gravity data agrees with GSVS11 to ±1.1 cm in terms of standard deviation along a line of 325 km. After incorporating the airborne gravity data collected at 11 km altitude, the standard deviation is reduced to ±0.8 cm. Numerical tests demonstrate the feasibility of spectral combination in geoid computation and the contribution of airborne gravity in an area of high quality terrestrial gravity data. Using the GSVS11 data and the spectral combination, the degree of correctness of the error spectra and the quality of satellite gravity models can also be revealed.


Airborne gravity Error degree variance Geoid Satellite gravity Spectral combination Spectral weight Terrestrial gravity 



Tao Jiang is funded by the China Scholarship Council and the National Natural Science Foundation of China (No. 41204008). NGS also provided partially support for this study. The authors thank Mr. Jarir Saleh for his constructive suggestions and discussions. Drs. Jonas Ågren, Jianliang Huang, Simon Holmes and Xiaopeng Li are greatly appreciated for their constructive comments and discussions.


  1. Ågren J (2004) Regional geoid determination methods for the era of satellite gravimetry. PhD dissertation, Royal Institute of TechnologyGoogle Scholar
  2. Andersen O, Knudsen P, Kenyon S, Factor J, Holmes SA (2013) The DTU13 Global marine gravity field—first evaluation. In: Ocean Surface Topography Science Team Meeting, Boulder, ColoradoGoogle Scholar
  3. Bae TS, Lee J, Kwon JH, Hong CK (2012) Update of the precision geoid determination in Korea. Geophys Prospect 60(2):555–571CrossRefGoogle Scholar
  4. Barzaghi R, Borghi A, Keller K, Forsberg R, Giori I, Loretti I, Olesen AV, Stenseng L (2009) Airborne gravity tests in the Italian area to improve the geoid model of Italy. Geophys Prospect 57(3):625–632CrossRefGoogle Scholar
  5. Bayoud FA, Sideris MG (2003) Two different methodologies for geoid determination from surface and airborne gravity data. Geophys J Int 155:914–922CrossRefGoogle Scholar
  6. Brockmann JM, Zehentner N, Höck E, Pail R, Loth I, Mayer-Gürr T, Schuh W (2014) EGM_TIM_RL05: an independent geoid with centimeter accuracy purely based on the GOCE mission. Geophys Res Lett 41(21):8089–8099CrossRefGoogle Scholar
  7. Bruinsma SL, Förste C, Abrikosov O, Marty JC, Rio MH, Mulet S, Bonvalot S (2013) The new ESA satellite-only gravity field model via the direct approach. Geophys Res Lett 40(13):3607–3612CrossRefGoogle Scholar
  8. Bürki B, Müller A, Kahle H-G (2004) DIADEM: the new digital astronomical deflection measuring system for high-precision measurements of deflections of the vertical at ETH Zurich. IAG GGSM2004 Meeting in Porto, PortugalGoogle Scholar
  9. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004. doi: 10.1029/2005RG000183
  10. Flury J, Rummel R (2009) On the geoid–quasigeoid separation inmountain areas. J Geod 83:829–847CrossRefGoogle Scholar
  11. Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. In: Reports of the Department of Geodetic Science and Surveying, #355. The Ohio State University, Columbus, OhioGoogle Scholar
  12. Forsberg R, Olesen A, Bastos L, Gidskehaug A, Meyer U, Timmen L (2000) Airborne geoid determination. Earth Planets Space 52:863–866CrossRefGoogle Scholar
  13. Forsberg R, Sahrum S, Alshamsi A, Din AHM (2012) Coastal geoid improvement using airborne gravimetric data in the United Arab Emirates. Int J Phys Sci 7(45):6012–6023Google Scholar
  14. Gleason DM (1988) Comparing ellipsoidal corrections to the transformation between the geopotential’s spherical and ellipsoidal spectrums. Manuscript Geodaetica 13:114–129Google Scholar
  15. Goiginger H, Rieser D, Mayer-Guerr T, Pail R, Schuh W.-D, Jäggi A, Maier A (2011) The combined satellite-only global gravity field model GOCO02S. European Geosciences Union General Assembly 2011, WienGoogle Scholar
  16. GRAV-D Science Team (2012) Gravity for the Redefinition of the American Vertical Datum (GRAV-D) Project, Airborne Gravity Data; Block CS03. Available 10/5/2014.
  17. Heiskanen WA, Moritz H (1967) Physics geodesy. Freeman, San FranciscoGoogle Scholar
  18. Hsiao YS, Hwang C (2010) Topography-assisted downward continuation of airborne gravity: an application for geoid determination in Taiwan. Terr Atmos Ocean Sci 21(3):1–11Google Scholar
  19. Hwang C, Hsiao YS, Shih HC, Yang M, Chen KH, Forsberg R, Olesen AV (2007) Geodetic and geophysical results from a Taiwan airborne gravity survey: data reduction and accuracy assessment. J Geophys Res Solid Earth 112:B04407. doi: 10.1029/2005JB004220 CrossRefGoogle Scholar
  20. Jekeli C (1988) The exact transformation between ellipsoidal and spherical harmonic expansions. Manuscripta Geodaetica 13(1):106–113Google Scholar
  21. Jekeli C, Yang HJ, Kwon JH (2013) Geoid determination in South Korea from a combination of terrestrial and airborne gravity anomaly data. J Korean Soc Surv Geod Photogramm Cartograp 31(6–2):567–576CrossRefGoogle Scholar
  22. Kusche J, Klees R (2002) Regularization of gravity field estimation from satellite gravity gradients. J Geod 76:359–368CrossRefGoogle Scholar
  23. Marchenko AN, Barthelmes F, Meyer U, Schwintzer P (2001) Regional geoid determination: an application to airborne gravity data in the Skagerrak. Scientific technical report STR. Potsdam: Deutsches GeoForschungsZentrum GFZ, p. 48Google Scholar
  24. Mayer-Gürr T et al. (2012) The new combined satellite only model GOCO03s. Presentation at GGHS 2012, Venice, 2012Google Scholar
  25. Moritz H (1980) Advanced physical geodesy. Herbert Wichmann Verlag, KarlsruheGoogle Scholar
  26. Novák P, Heck B (2002) Downward continuation and geoid determination based on band-limited airborne gravity data. J Geod 76:269–278CrossRefGoogle Scholar
  27. Novák P, Kern M, Schwarz KP, Sideris MG, Heck B, Ferguson S, Hammada Y, Wei M (2003) On geoid determination from airborne gravity. J Geod 76:510–522CrossRefGoogle Scholar
  28. Olesen AV (2003) Improved airborne scalar vector gravimetry regional gravity field mapping and geoid determination. Technical report, National Survey and Cadastre (KMS), Copenhagen, DenmarkGoogle Scholar
  29. Pavlis NK, Holmes SA, Kenyon S, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406CrossRefGoogle Scholar
  30. Pavlis NK, Holmes SA, Kenyon SC, and Factor JK (2013) Correction to “the development and evaluation of the earth gravitational model 2008 (EGM2008)”. J Geophys Res 118(4):2633Google Scholar
  31. Picard RR, Cook RD (1984) Cross-validation of regression models. J Am Stat Assoc 79(387):575–583CrossRefGoogle Scholar
  32. Rapp RH, Pavlis NK (1990) The development and analysis of geopotential coefficient models to spherical harmonic degree 360. J Geophys Res 95(B13):21885–21911CrossRefGoogle Scholar
  33. Saleh J, Li XP, Wang YM, Roman DR, Smith DA (2013) Error analysis of the NGS’ surface gravity database. J Geod 87:203–221CrossRefGoogle Scholar
  34. Schwarz KP, Li Y (1996) What can airborne gravimetry contribute to geoid determination? J Geophys Res 101(B8):17873–17881Google Scholar
  35. Sjöberg LE (1981) Least-squares combination of satellite and terrestrial data in physical geodesy. Ann Geophys 37:25–30Google Scholar
  36. Sjöberg LE (1986) Comparison of some methods of modifying Stokes’ formula. Boll Geod Sci Affini 45(2):229–248Google Scholar
  37. Smith DA, Holmes SA, Li XP, Guillaume S, Wang YM, Bürki B, Roman DR, Damiani TM (2013) Confirming regional 1 cm differential geoid accuracy from airborne gravimetry: the Geoid Slope Validation Survey of 2011. J Geod 87:885–907CrossRefGoogle Scholar
  38. Tikhonov AN (1963) Regularization of incorrectly posed problems. Sov Math Dokl 4:1035–1038Google Scholar
  39. Tscherning CC, Rapp R (1974) Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variance models. Reports of the Department of Geodetic Science and Surveying, #208. The Ohio State University, ColumbusGoogle Scholar
  40. Tscherning CC, Knudsen P, Forsberg R (1991) Description of the GRAVSOFT package. Technical report, Geophysical Institute, University of CopenhagenGoogle Scholar
  41. Wang YM, Roman DR, Saleh J (2007) Analytical downward and upward continuation based on the method of domain decomposition and local functions. In: Peiliang X, Jingnan L, Athanasios D (eds) VI Hotine-Marussi symposium on theoretical and computational geodesy series, vol 132. International Association of Geodesy Symposia, pp 356–360Google Scholar
  42. Wang YM, Saleh J, Roman DR (2012) The US gravimetric geoid of 2009 (USGG2009): model development and evaluation. J Geod 86:165–180CrossRefGoogle Scholar
  43. Wenzel HG (1982) Geoid computation by least-squares spectral combination using intergral kernels. In: Proceedings of the general IAG meeting, Tokyo, pp 438–453Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Chinese Academy of Surveying and MappingBeijingChina
  2. 2.National Geodetic Survey, NOAASilver SpringUSA

Personalised recommendations