Journal of Geodesy

, Volume 90, Issue 8, pp 773–785 | Cite as

Estimation of satellite antenna phase center offsets for Galileo

  • P. Steigenberger
  • M. Fritsche
  • R. Dach
  • R. Schmid
  • O. Montenbruck
  • M. Uhlemann
  • L. Prange
Original Article

Abstract

Satellite antenna phase center offsets for the Galileo In-Orbit Validation (IOV) and Full Operational Capability (FOC) satellites are estimated by two different analysis centers based on tracking data of a global GNSS network. The mean x- and y-offsets could be determined with a precision of a few centimeters. However, daily estimates of the x-offsets of the IOV satellites show pronounced systematic effects with a peak-to-peak amplitude of up to 70 cm that depend on the orbit model and the elevation of the Sun above the orbital plane. For the IOV y-offsets, no dependence on the orbit model exists but the scatter strongly depends on the elevation of the Sun above the orbital plane. In general, these systematic effects are significantly smaller for the FOC satellites. The z-offsets of the two analysis centers agree within the 10–15 cm level, and the time series do not show systematic effects. The application of an averaged Galileo satellite antenna model obtained from the two solutions results in a reduction of orbit day boundary discontinuities by up to one third—even if an independent software package is used.

Keywords

GNSS Galileo Antenna model Satellite antenna phase center Orbit modeling 

References

  1. Arenas S, Monjas F, Montesano A, Montesano C, Mangenot C, Salghetti L (2011) Performances of GALILEO system navigation antenna for global positioning. In: Proceedings of the Fifth European Conference on Antennas and Propagation (EuCAP 2011), IEEE, pp 1018–1022Google Scholar
  2. Arianespace (2014) Galileo satellites experience orbital injection anomaly on Soyuz launch: initial report. Press release. http://www.arianespace.com/press-release/galileo-satellites-experience-orbital-injection-anomaly-on-soyuz-launch-initial-report. Accessed 10 May 2016
  3. Arnold D, Meindl M, Beutler G, Dach R, Schaer S, Lutz S, Prange L, Sośnica K, Mervart L, Jäggi A (2015) CODE’s new solar radiation pressure model for GNSS orbit determination. J Geod 89(8):775–791. doi:10.1007/s00190-015-0814-4
  4. Bar-Sever YE (1996) A new model for GPS yaw attitude. J Geod 70(11):714–723. doi:10.1007/BF00867149
  5. Becker M, Zeimetz P, Schönemann E (2010) Anechoic chamber calibrations of phase center variations for new and existing GNSS signals and potential impacts in IGS processing. In: IGS Workshop 2010, NewcastleGoogle Scholar
  6. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19:367–386Google Scholar
  7. Boehm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(7):L07304. doi:10.1029/2005GL025546
  8. Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10):679–683. doi:10.1007/s00190-007-0135-3
  9. Chen X, Parini CG, Collins B, Yao Y, Rehman MU (2012) Antennas for global navigation satellite systems. Wiley, New YorkGoogle Scholar
  10. Dach R, Schmid R, Schmitz M, Thaller D, Schaer S, Lutz S, Steigenberger P, Wübbena G, Beutler G (2011) Improved antenna phase center models for GLONASS. GPS Solut 15(1):49–65. doi:10.1007/s10291-010-0169-5
  11. Dach R, Lutz S, Walser P, Fridez P (eds) (2015) Bernese GNSS Software Version 5.2. Astronomical Institute, University of Bern, Switzerland. doi:10.7892/boris.72297
  12. de Selding PB (2014) ESA proceeding with Galileo launches despite in-orbit satellite issues. SpaceNews. http://spacenews.com/41616esa-proceeding-with-galileo-launches-despite-in-orbit-satellite-issues. Accessed 10 May 2016
  13. Dilssner F (2010) GPS IIF-1 satellite: antenna phase center and attitude modeling. Inside GNSS 5(6):59–64Google Scholar
  14. Dilssner F, Springer T, Flohrer C, Dow J (2010) Estimation of phase center corrections for GLONASS-M satellite antennas. J Geod 84(8):467–480. doi:10.1007/s00190-010-0381-7
  15. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4):191–198. doi:10.1007/s00190-008-0300-3
  16. Ebert K, Oesterlin W (2008) Dynamic yaw steering method for spacecraft. European patent specification EP 1526072B1Google Scholar
  17. ESA (2015) Galileo system updated and back to work. http://www.esa.int/Our_Activities/Navigation/Galileo_system_updated_and_back_to_work. Accessed 10 May 2016
  18. European Union (2014) European GNSS (Galileo) open service: signal in space interface control document. OS SIS ICD Issue 1.2Google Scholar
  19. Ge M, Gendt G, Dick G, Zhang FP (2005) Improving carrier-phase ambiguity resolution in global GPS network solutions. J Geod 79(1–3):103–110. doi:10.1007/s00190-005-0447-0
  20. Gendt G, Dick G, Söhne W (1999) GFZ analysis center of IGS – annual report 1998. In: Gowey K, Neilan R, Moore A (eds) IGS 1998 Technical Reports, Jet Propulsion Laboratory, pp 79–87Google Scholar
  21. Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS – global navigation satellite systems: GPS, GLONASS, Galileo & more, 1st edn. Springer, WienGoogle Scholar
  22. IGS ACC (2014) International GNSS Service 2nd data reprocessing campaign. http://acc.igs.org/reprocess2.html. Accessed 10 May 2016
  23. ILRS (2015) Galileo center of mass information. http://ilrs.gsfc.nasa.gov/missions/satellite_missions/current_missions/ga01_com.html. Accessed 10 May 2016
  24. Monjas F, Montesano A, Arenas S (2010a) Group delay performances of Galileo system navigation antenna for global positioning. In: 32nd ESA Antenna Workshop on Antennas for Space Applications, NoordwijkGoogle Scholar
  25. Monjas F, Montesano A, Montesano C, Llorente JJ, Cuesta LE, Naranjo M, Arenas S, Madrazo I, Martínez L (2010b) Test campaign of the IOV (In Orbit Validation) Galileo system navigation antenna for global positioning. In: Proceedings Fourth European Conference on Antennas and Propagation (EuCAP 2010). IEEE, New YorkGoogle Scholar
  26. Montenbruck O, Steigenberger P, Khachikyan R, Weber G, Langley RB, Mervart L, Hugentobler U (2014) IGS-MGEX: preparing the ground for multi-constellation GNSS science. Inside GNSS 9(1):42–49Google Scholar
  27. Montenbruck O, Schmid R, Mercier F, Steigenberger P, Noll C, Fatkulin R, Kogure S, Ganeshan AS (2015a) GNSS satellite geometry and attitude models. Adv Space Res 56(6):1015–1029. doi:10.1016/j.asr.2015.06.019
  28. Montenbruck O, Steigenberger P, Hauschild A (2015b) Broadcast versus precise ephemerides: a multi-GNSS perspective. GPS Solut 19(2):321–333. doi:10.1007/s10291-014-0390-8
  29. Montenbruck O, Steigenberger P, Hugentobler U (2015c) Enhanced solar radiation pressure modeling for Galileo satellites. J Geod 89(3):283–297. doi:10.1007/s00190-014-0774-0
  30. Montesano A, Montesano C, Caballero R, Naranjo M, Monjas F, Cuesta LE, Zorrilla P, Martínez L (2007) Galileo system navigation antenna for global positioning. In: Proceedings of the Second European Conference on Antennas and Propagation (EuCAP 2007)Google Scholar
  31. Pavlis E (2009) SLRF2008: the ILRS reference frame for SLR POD contributed to ITRF2008. In: 2009 Ocean Surface Topography Science Team Meeting, SeattleGoogle Scholar
  32. Rebischung P (2012) IGb08: an update on IGS08. IGSMAIL-6663. https://igscb.jpl.nasa.gov/pipermail/igsmail/2012/007853.html. Accessed 10 May 2016
  33. Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494. doi:10.1007/s10291-011-0248-2
  34. Rizos C, Montenbruck O, Weber R, Weber G, Neilan R, Hugentobler U (2013) The IGS MGEX experiment as a milestone for a comprehensive multi-GNSS service. In: Proceedings of the ION 2013 Pacific PNT meeting, pp 289–295Google Scholar
  35. Rubio J, González MA, Zapata J, Montesano A, Monjas F, Cuesta LE (2006) Full-wave analysis of the Galileo system navigation antenna by means of the generalized scattering matrix of a finite array. In: Proceedings of the First European Conference on Antennas and Propagation (EuCAP 2006). doi:10.1109/EUCAP.2006.4584554
  36. Schmid R (2015) igs08_1854.atx: Update including Galileo, BeiDou, QZSS and IRNSS satellites. IGSMAIL-7126. https://igscb.jpl.nasa.gov/pipermail/igsmail/2015/008316.html. Accessed 10 May 2016
  37. Schmid R, Rothacher M (2003) Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites. J Geod 77(7–8):440–446. doi:10.1007/s00190-003-0339-0
  38. Schmid R, Rothacher M, Thaller D, Steigenberger P (2005) Absolute phase center corrections of satellite and receiver antennas: impact on global GPS solutions and estimation of azimuthal phase center variations of the satellite antenna. GPS Solut 9(4):283–293. doi:10.1007/s10291-005-0134-x
  39. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798. doi:10.1007/s00190-007-0148-y
  40. Schmid R, Dach R, Collilieux X, Jäggi A, Schmitz M, Dilssner F (2015) Absolute IGS antenna phase center model igs08.atx: status and potential improvements. J Geod 90(4):343–364. doi:10.1007/s00190-015-0876-3
  41. Springer TA (2009) NAPEOS mathematical models and algorithms. Tech. Rep. DOPS-SYS-TN-0100-OPS-GN, ESA/ESOC, DarmstadtGoogle Scholar
  42. Steigenberger P, Dach R, Prange L, Montenbruck O (2015a) Galileo satellite antenna modeling. In: Geophys Res Abstr 17, EGU2015-10772-1Google Scholar
  43. Steigenberger P, Hugentobler U, Loyer S, Perosanz F, Prange L, Dach R, Uhlemann M, Gendt G, Montenbruck O (2015b) Galileo orbit and clock quality of the IGS Multi-GNSS Experiment. Adv Space Res 55(1):269–281. doi:10.1016/j.asr.2014.06.030
  44. Steigenberger P, Montenbruck O, Hugentobler U (2015c) GIOVE-B solar radiation pressure modeling for precise orbit determination. Adv Space Res 55(5):1422–1431. doi:10.1016/j.asr.2014.12.009
  45. Uhlemann M, Gendt G, Ramatschi M, Deng Z (2015) GFZ global multi-GNSS network and data processing results. In: Willis P (ed) IAG 150 Years. International Association of Geodesy Symposia 143. doi:10.1007/1345_2015_120
  46. Valle P, Netti A, Zolesi M, Mizzoni R, Bandinelli M, Guidi R (2006) Efficient dual-band planar array suitable to GALILEO. In: Proceedings of the First European Conference on Antennas and Propagation (EuCAP 2006). doi:10.1109/EUCAP.2006.4584868
  47. Wermuth M, Montenbruck O, van Helleputte T (2010) GPS high precision orbit determination software tools (GHOST). In: 4th International Conference on Astrodynamics Tools and Techniques, MadridGoogle Scholar
  48. Zhu SY, Massmann FH, Reigber C (2003) Satellite antenna phase center offsets and scale errors in GPS solutions. J Geod 76(11):668–672. doi:10.1007/s00190-002-0294-1

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.German Space Operations CenterDeutsches Zentrum für Luft- und RaumfahrtWeßlingGermany
  2. 2.Deutsches GeoForschungsZentrum GFZPotsdamGermany
  3. 3.Astronomisches InstitutUniversität BernBernSwitzerland
  4. 4.Deutsches Geodätisches ForschungsinstitutTechnische Universität MünchenMunichGermany
  5. 5.Alberding GmbHWildauGermany

Personalised recommendations