Journal of Geodesy

, Volume 90, Issue 7, pp 655–675 | Cite as

Fast computation of general forward gravitation problems

  • Fabien Casenave
  • Laurent Métivier
  • Gwendoline Pajot-Métivier
  • Isabelle Panet
Original Article

Abstract

We consider the well-known problem of the forward computation of the gradient of the gravitational potential generated by a mass density distribution of general 3D geometry. Many methods have been developed for given geometries, and the computation time often appears as a limiting practical issue for considering large or complex problems. In this work, we develop a fast method to carry out this computation, where a tetrahedral mesh is used to model the mass density distribution. Depending on the close- or long-range nature of the involved interactions, the algorithm automatically switches between analytic integration formulae and numerical quadratic formulae, and relies on the Fast Multipole Method to drastically increase the computation speed of the long-range interactions. The parameters of the algorithm are empirically chosen for the computations to be the fastest possible while guarantying a given relative accuracy of the result. Computations that would load many-core clusters for days can now be carried out on a desk computer in minutes. The computation of the contribution of topographical masses to the Earth’s gravitational field at the altitude of the GOCE satellite and over France are proposed as numerical illustrations of the method.

Keywords

Gravitation General 3D geometry  Fast multipole method 

Notes

Acknowledgments

The authors wish to thank CNES for financial support through the TOSCA Committee, and INRIA for providing the sources of Scalfmm.

References

  1. Amante C, Eakins BW (2009) Etopo1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAAGoogle Scholar
  2. Balmino G, Vales N, Bonvalot S, Briais A (2012) Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. J Geodesy 86:499–520CrossRefGoogle Scholar
  3. Barnett CT (1976) Theoretical modeling of the magnetic and gravitational fields of an arbitrarily shaped three-dimensional body. Geophysics 41(6):1353–1364CrossRefGoogle Scholar
  4. Bhattacharyya BK (1964) Magnetic anomalies due to prism-shaped bodies with arbitrary polarization. Geophysics 29(4):517–531CrossRefGoogle Scholar
  5. Bhattacharyya BK (1966) Continuous spectrum of the total-magnetic-field anomaly due to a rectangular prismatic body. Geophysics 31(1):97–121CrossRefGoogle Scholar
  6. Bhattacharyya BK (1967) Some general properties of potential fields in space and frequency domain: a review. Geoexploration 5(3):127–143CrossRefGoogle Scholar
  7. Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. Cady JW (1980) Calculation of gravity and magnetic anomalies of finite-length right polygonal prisms. Geophysics 45(10):1507–1512CrossRefGoogle Scholar
  9. Claessens SJ, Hirt C (2013) Ellipsoidal topographic potential: new solutions for spectral forward gravity modeling of topography with respect to a reference ellipsoid. J Geophys Res 118:5991–6002CrossRefGoogle Scholar
  10. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex fourier series. Math Comput 19(90):297–301CrossRefGoogle Scholar
  11. Coulaud O, Bramas B, Piacibello C Scalfmm, C++ fast multipole method library for HPC. http://scalfmm-public.gforge.inria.fr/doc/
  12. Davis K, Andy Kass M, Li Y (2011) Rapid gravity and gravity gradiometry terrain corrections via an adaptive quadtree mesh discretization. Explor Geophys 42(1):88–97CrossRefGoogle Scholar
  13. Fong W, Darve E (2009) The black-box fast multipole method. J Comput Phys 228(23):8712–8725CrossRefGoogle Scholar
  14. Forsberg R (1985) Gravity field terrain effect computations by FFT. Bulletin Géodésique 59(4):342–360CrossRefGoogle Scholar
  15. Furness P (1994) A physical approach to computing magnetic fields1. Geophys Prospect 42(5):405–416CrossRefGoogle Scholar
  16. Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73(2):325–348CrossRefGoogle Scholar
  17. Grombein T, Seitz K, Heck B (2013) Optimized formulas for the gravitational field of a tesseroid. J Geodesy 87(7):645–660CrossRefGoogle Scholar
  18. Hager B, Clayton R, Richards M, Comer R, Dziewonski A (1985) Lower mantle heterogeneity, dynamic topography and the geoid. Nature 313:541–545CrossRefGoogle Scholar
  19. Hansen RO, Wang X (1988) Simplified frequency-domain expressions for potential fields at arbitrary three-dimensional bodies. Geophysics 53(3):365–374CrossRefGoogle Scholar
  20. Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J Geodesy 81(2):121–136CrossRefGoogle Scholar
  21. Holstein H (2002a) Gravimagnetic similarity in anomaly formulas for uniform polyhedra. Geophysics 67(4):1126–1133CrossRefGoogle Scholar
  22. Holstein H (2002b) Invariance in gravimagnetic anomaly formulas for uniform polyhedra. Geophysics 67(4):1134–1137CrossRefGoogle Scholar
  23. Jekeli C, Zhu L (2006) Comparison of methods to model the gravitational gradients from topographic data bases. Geophys J Int 166(3):999–1014CrossRefGoogle Scholar
  24. Kaban MK, Schwintzer P, Reigber C (2004) A new isostatic model of the lithosphere and gravity field. J Geodesy 78:368–385CrossRefGoogle Scholar
  25. Li X, Chouteau M (1998) Three-dimensional gravity modeling in all space. Surv Geophys 19(4):339–368CrossRefGoogle Scholar
  26. Nabighian MN, Grauch VJS, Hansen RO, LaFehr TR, Li Y, Peirce JW, Phillips JD, Ruder ME (2005a) The historical development of the magnetic method in exploration. Geophysics 70(6):33–61CrossRefGoogle Scholar
  27. Nabighian MN, Ander ME, Grauch VJS, Hansen RO, LaFehr TR, Li Y, Pearson WC, Peirce JW, Phillips JD, Ruder ME (2005b) Historical development of the gravity method in exploration. Geophysics 70(6):63–89CrossRefGoogle Scholar
  28. Nagy D (1966) The gravitational attraction of a right rectangular prism. Geophysics 31(2):362–371CrossRefGoogle Scholar
  29. Okabe M (1979) Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies. Geophysics 44:730CrossRefGoogle Scholar
  30. Panet I, Pajot-Métivier G, Greff-Lefftz M, Métivier L, Diament M, Mandea M (2014) Mapping the mass distribution of Earth’s mantle using satellite-derived gravity gradients. Nat Geosci 7(2):131–135CrossRefGoogle Scholar
  31. Parker RL (1973) The rapid calculation of potential anomalies. Geophys J R Astron Soc 31(4):447–455CrossRefGoogle Scholar
  32. Pavlis N, Holmes S, Kenyon S, Factor J (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406CrossRefGoogle Scholar
  33. Pedersen LB (1985) The gravity and magnetic fields from ellipsoidal bodies in the wavenumber domain. Geophys Prospect 33(2):263–281CrossRefGoogle Scholar
  34. Petrovic S (1996) Determination of the potential of homogeneous polyhedral bodies using line integrals. J Geodesy 71(1):44–52CrossRefGoogle Scholar
  35. Plouff D (1976) Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections. Geophysics 41(4):727–741CrossRefGoogle Scholar
  36. Pohánka V (1988) Optimum expression for computation of the gravity field of a homogeneous polyhedral body1. Geophys Prospect 36(7):733–751CrossRefGoogle Scholar
  37. Rassmussen R, Pedersen LB (1979) End corrections in potential field modeling. Geophys Prospect 27(4):749–760CrossRefGoogle Scholar
  38. Shuey RT, Pasquale AS (1973) End corrections in magnetic profile interpretation. Geophysics 38(3):507–512CrossRefGoogle Scholar
  39. Sideris M (1990) Rigorous gravimetric terrain modeling using Molodensky operator. Manuscr Geod 15:342–360Google Scholar
  40. Singh B, Guptasarma D (2001) New method for fast computation of gravity and magnetic anomalies from arbitrary polyhedra. Geophysics 66(2):521–526CrossRefGoogle Scholar
  41. Singh SK, Sabina FJ (1978) Magnetic anomaly due to a vertical right circular cylinder with arbitrary polarization. Geophysics 43(1):173–178CrossRefGoogle Scholar
  42. Stoer J, Bulirsch R (2002) Introduction to numerical analysis, 3rd edn. Springer, New YorkGoogle Scholar
  43. Talwani M (1965) Computation with the help of a digital computer of magnetic anomalies caused by bodies of arbitrary shape. Geophysics 30(5):797–817CrossRefGoogle Scholar
  44. Talwani M, Ewing M (1960) Rapid computation of gravitational attraction of three-dimensional bodies of arbitrary shape. Geophysics 25(1):203–225CrossRefGoogle Scholar
  45. Talwani M, Lamar Worzel J, Landisman M (1959) Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone. J Geophys Res 64(1):49–59CrossRefGoogle Scholar
  46. Tscherning CC, Forsberg R, Knudsen P (1992) Description of the GRAVSOFT package for geoid determination. In: Proceedings of first continental workshop on the geoid in Europe, Prague, pp 327–334Google Scholar
  47. Tsoulis D, Jamet O, Verdun J, Gonindard N (2009) Recursive algorithms for the computation of the potential harmonic coefficients of a constant density polyhedron. J Geodesy 83:925–942CrossRefGoogle Scholar
  48. Uieda L, Bomfim EP, Braitenberg C, Molina E (2011) Optimal forward calculation method of the Marussi tensor due to a geologic structure at goce height. In: Proceedings of the 4th International GOCE User WorkshopGoogle Scholar
  49. Wieczorek MA (2014) SHTOOLS—tools for working with spherical harmonics (v2.9.1)Google Scholar
  50. Wieczorek MA, Philips RJ (1998) Potential anomalies on a sphere: applications to the thickness of the lunar crust. J Geophys Res 103(E1):1715–1724CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Fabien Casenave
    • 1
    • 2
  • Laurent Métivier
    • 1
  • Gwendoline Pajot-Métivier
    • 1
  • Isabelle Panet
    • 1
  1. 1.IGN LAREGUniv Paris Diderot, Sorbonne Paris CitéParis Cedex 13France
  2. 2.SafranTechMagny-Les-HameauxFrance

Personalised recommendations