Journal of Geodesy

, Volume 90, Issue 6, pp 573–584 | Cite as

Monthly and sub-monthly hydrological variability: in-orbit validation by GRACE level 1B observations

  • Annette Eicker
  • Anne Springer
Original Article


In this study, we present an approach to validate hydrological model output directly on the level of GRACE level 1B observations by analyzing K-band range-rate residuals. Modeled water mass variations are converted to simulated satellite observations and subtracted from the original measurements. This procedure bypasses the downward continuation and filtering steps generally required for water cycle analysis on the basis of gravity field maps. The goal of the study is twofold: (1) we demonstrate the feasibility of using residuals analysis for hydrological model validation in general and (2) we focus on the potential of the approach to investigate the signal content of temporally high-frequent (daily) modeled hydrological mass variations. In addition to the output of three different hydrological process models, we study mass changes computed from two different daily GRACE products. GRACE here serves as a reference, but its spatial resolution is limited and the daily models are not computed independently. Regarding aspect (1), our results show that the agreement of each of the models with GRACE varies strongly depending on geographical location. Aspect (2) is not only interesting for model validation, but it is also important in the context of improving the GRACE de-aliasing concept. We demonstrate that not only the daily GRACE models, but also the daily hydrological model output contains information on time scales smaller than 1 month. Realistically modeled or observed short-term hydrological mass changes may serve as additional de-aliasing product for GRACE and thus contribute to increasing the accuracy and resolution of future GRACE products.


GRACE Residuals analysis Hydrological modeling De-aliasing 



The authors would like to thank Petra Döll and Hannes Müller Schmied (University of Frankfurt) for providing the daily WGHM output, Robert Dill (GFZ Potsdam) for the LSDM model results and NASA’s Hydrological Sciences Laboratory for the GLDAS products. Furthermore, we thank the German Research Foundation (DFG) for their funding within the COAST project.

Supplementary material

190_2016_895_MOESM1_ESM.pdf (62 kb)
Supplementary material 1 (pdf 62 KB)


  1. Alkama R, Decharme B, Douville H, Becker M, Cazenave A, Sheffield J, Voldoire A, Tyteca S, Le Moigne P (2010) Global evaluation of the ISBA-TRIP continental hydrological system. Part I: comparison to GRACE terrestrial water storage estimates and in situ river discharges. J Hydrometeorol 11(3):583–600CrossRefGoogle Scholar
  2. Biancale R, Bode A (2006) Mean annual and seasonal atmospheric tide models based on 3-hourly and 6-hourly ECMWF surface pressure data, (Scientific Technical Report STR; 06/01). Deutsches GeoForschungsZentrum GFZ, Potsdam. doi: 10.2312/GFZ.b103-06011
  3. Bonin JA, Chambers DP (2011) Evaluation of high-frequency oceanographic signal in GRACE data: implications for de-aliasing. Geophys Res Lett 38(17). doi: 10.1029/2011GL048881
  4. Bosch W, Savcenko R, Flechtner F, Dahle C, Mayer-Gürr T, Stammer D, Taguchi E, Ilk KH (2009) Residual ocean tide signals from satellite altimetry, GRACE gravity fields, and hydrodynamic modelling. Geophys J Int 178(3):1185–1192CrossRefGoogle Scholar
  5. Case K, Kruizinga G, Wu S (2010) GRACE level 1B data product user handbook. JPL Publication D-22027Google Scholar
  6. Chambers DP, Bonin J (2012) Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean. Ocean Sci 8(5):859–868CrossRefGoogle Scholar
  7. Dill R (2008) Hydrological model LSDM for operational Earth rotation and gravity field variations. GFZ Technical ReportGoogle Scholar
  8. Dobslaw H, Flechtner F, Bergmann-Wolf I, Dahle C, Dill R, Esselborn S, Sasgen I, Thomas M (2013) Simulating high-frequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05. J Geophys Res Oceans 118(7):3704–3711CrossRefGoogle Scholar
  9. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270(1):105–134CrossRefGoogle Scholar
  10. Döll P, Hoffmann-Dobrev H, Portmann FT, Siebert S, Eicker A, Rodell M, Strassberg G, Scanlon B (2012) Impact of water withdrawals from groundwater and surface water on continental water storage variations. J Geodyn 59:143–156CrossRefGoogle Scholar
  11. Döll P, Fritsche M, Eicker A, Schmied HM (2014a) Seasonal water storage variations as impacted by water abstractions: comparing the output of a global hydrological model with GRACE and GPS observations. Surv Geophys 35(6):1311–1331CrossRefGoogle Scholar
  12. Döll P, Müller Schmied H, Schuh C, Portmann FT, Eicker A (2014b) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res 50(7):5698–5720CrossRefGoogle Scholar
  13. Eicker A, Schumacher M, Kusche J, Döll P, Schmied HM (2014) Calibration/data assimilation approach for integrating GRACE data into the WaterGAP Global Hydrology Model (WGHM) using an Ensemble Kalman filter: first results. Surv Geophys 35(6):1285–1309CrossRefGoogle Scholar
  14. Flechtner F (2007) AOD1B Product Description Document for Product Releases 01 to 04 (Rev. 3.1, April 13, 2007). GRACE project document, pp 327–750Google Scholar
  15. Flechtner F, Dobslaw H (2013) AOD1B Product Description Document for Product Releases 05. Tech. rep. Geoforschungszentrum PotsdamGoogle Scholar
  16. Flechtner F, Thomas M, Dobslaw H (2010) Improved non-tidal atmospheric and oceanic de-aliasing for GRACE and SLR satellites. In: Flechtner FM, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System Earth via geodetic-geophysical space techniques. Springer, pp 131–142Google Scholar
  17. Grippa M, Kergoat L, Frappart F, Araud Q, Boone A, De Rosnay P, Lemoine JM, Gascoin S, Balsamo G, Ottle C et al (2011) Land water storage variability over West Africa estimated by Gravity Recovery and Climate Experiment (GRACE) and land surface models. Water Resour Res 47(5). doi: 10.1029/2009WR008856
  18. Han SC, Rowlands DD, Luthcke SB, Lemoine FG (2008) Localized analysis of satellite tracking data for studying time-variable Earth’s gravity fields. J Geophys Res Solid Earth 113(B6). doi: 10.1029/2007JB005218
  19. Han SC, Kim H, Yeo IY, Yeh P, Oki T, Seo KW, Alsdorf D, Luthcke SB (2009) Dynamics of surface water storage in the Amazon inferred from measurements of inter-satellite distance change. Geophys Res Lett 36(9). doi: 10.1029/2009GL037910
  20. Han SC, Sauber J, Luthcke S (2010a) Regional gravity decrease after the 2010 Maule (Chile) earthquake indicates large-scale mass redistribution. Geophys Res Lett 37(23). doi: 10.1029/2010GL045449
  21. Han SC, Yeo IY, Alsdorf D, Bates P, Boy JP, Kim H, Oki T, Rodell M (2010b) Movement of Amazon surface water from time-variable satellite gravity measurements and implications for water cycle parameters in land surface models. Geochem Geophys Geosyst 11(9). doi: 10.1029/2010GC003214
  22. Klinger B, Mayer-Gürr T (2014) Combination of GRACE star camera and angular acceleration data. In: EGU General Assembly Conference Abstracts, vol 16, p 5340Google Scholar
  23. Kurtenbach E, Mayer-Gürr T, Eicker A (2009) Deriving daily snapshots of the Earth’s gravity field from GRACE L1B data using Kalman filtering. Geophys Res Lett 36(17). doi: 10.1029/2009GL039564
  24. Kurtenbach E, Eicker A, Mayer-Gürr T, Holschneider M, Hayn M, Fuhrmann M, Kusche J (2012) Improved daily GRACE gravity field solutions using a Kalman smoother. J Geodyn 59:39–48CrossRefGoogle Scholar
  25. Loomis BD, Nerem R, Luthcke S (2012) Simulation study of a follow-on gravity mission to GRACE. J Geod 86(5):319–335CrossRefGoogle Scholar
  26. Luthcke SB, Sabaka T, Loomis B, Arendt A, McCarthy J, Camp J (2013) Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J Glaciol 59(216):613–631CrossRefGoogle Scholar
  27. Mayer-Gürr T (2006) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Dissertation at the University of Bonn, uRN: urn:nbn:de:hbz:5N-09047.
  28. Mayer-Gürr T, Kurtenbach E, Eicker A (2010) ITG-Grace2010 gravity field model.
  29. Mayer-Gürr T, Zehentner N, Klinger B, Kvas A (2014) ITSG-Grace2014: a new GRACE gravity field release computed in Graz. Presentation at the GRACE Science Team Meeting (GSTM), Potsdam 09/2014Google Scholar
  30. McCarthy D, Petit G (2004) IERS Conventions 2003. No. 32 in IERS Technical Notes. Verlag des Bundesamts fuer Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  31. Müller Schmied H, Eisner S, Franz D, Wattenbach M, Portmann FT, Flörke M, Döll P (2014) Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol Earth Syst Sci 18(9):3511–3538CrossRefGoogle Scholar
  32. Pail R, Bingham R, Braitenberg C, Dobslaw H, Eicker A, Güntner A, Horwath M, Ivins E, Longuevergne L, Panet I, Wouters B, IUGG Expert Panel (2015) Science and user needs for observing global mass transport to understand global change and to benefit society. Surv Geophys. doi: 10.1007/s10712-015-9348-9
  33. Pokhrel YN, Fan Y, Miguez-Macho G, Yeh PJF, Han SC (2013) The role of groundwater in the Amazon water cycle: 3. Influence on terrestrial water storage computations and comparison with GRACE. J Geophys Res Atmos 118(8):3233–3244CrossRefGoogle Scholar
  34. Rodell M, Houser P, Uea Jambor, Gottschalck J, Mitchell K, Meng C, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M et al (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394CrossRefGoogle Scholar
  35. Savcenko R, Bosch W (2012) EOT11a—empirical ocean tide model from multi-mission satellite altimetry. No. 89 in DGFI Report. Deutsches Geodätisches Forschungsinstitut, MunichGoogle Scholar
  36. Standish EM (1998) JPL Planetary and Lunar Ephemerides DE405/LE405. PasadenaGoogle Scholar
  37. Syed TH, Famiglietti JS, Rodell M, Chen J, Wilson CR (2008) Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Res Res 44(2). doi: 10.1029/2006WR005779
  38. Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9). doi: 10.1029/2004GL019920
  39. Thompson P, Bettadpur S, Tapley B (2004) Impact of short period, non-tidal, temporal mass variability on GRACE gravity estimates. Geophys Res Lett 31(6). doi: 10.1029/2003GL019285
  40. Werth S, Güntner A (2010) Calibration analysis for water storage variability of the global hydrological model WGHM. Hydrol Earth Syst Sci 14(1):59CrossRefGoogle Scholar
  41. Zaitchik BF, Rodell M, Reichle RH (2008) Assimilation of GRACE terrestrial water storage data into a land surface model: results for the Mississippi River basin. J Hydrometeorol 9(3):535–548CrossRefGoogle Scholar
  42. Zehentner N, Mayer-Gürr T (2014) Gravity variations from precise LEO orbits of GRACE and GOCE. In: EGU General Assembly Conference Abstracts, vol 16, p 6018Google Scholar
  43. Zenner L, Fagiolini E, Daras I, Flechtner F, Gruber T, Schmidt T, Schwarz G (2012) Non-tidal atmospheric and oceanic mass variations and their impact on GRACE data analysis. J Geodyn 59:9–15CrossRefGoogle Scholar
  44. Zenner L, Bergmann-Wolf I, Dobslaw H, Gruber T, Güntner A, Wattenbach M, Esselborn S, Dill R (2014) Comparison of daily GRACE gravity field and numerical water storage models for de-aliasing of satellite gravimetry observations. Surv Geophys 35(6):1251–1266Google Scholar
  45. Zhang Z, Chao B, Chen J, Wilson C (2015) Terrestrial water storage anomalies of Yangtze River Basin droughts observed by GRACE and connections with ENSO. Glob Planet Chang 126:35–45. doi: 10.1016/j.gloplacha.2015.01 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Geodesy and GeoinformationBonn UniversityBonnGermany
  2. 2.Centre of High-Performance Scientific Computing in Terrestrial SystemsGeoverbund ABC/JBonnGermany

Personalised recommendations