Journal of Geodesy

, Volume 90, Issue 6, pp 537–559 | Cite as

A systematic impact assessment of GRACE error correlation on data assimilation in hydrological models

  • Maike SchumacherEmail author
  • Jürgen Kusche
  • Petra Döll
Original Article


Recently, ensemble Kalman filters (EnKF) have found increasing application for merging hydrological models with total water storage anomaly (TWSA) fields from the Gravity Recovery And Climate Experiment (GRACE) satellite mission. Previous studies have disregarded the effect of spatially correlated errors of GRACE TWSA products in their investigations. Here, for the first time, we systematically assess the impact of the GRACE error correlation structure on EnKF data assimilation into a hydrological model, i.e. on estimated compartmental and total water storages and model parameter values. Our investigations include (1) assimilating gridded GRACE-derived TWSA into the WaterGAP Global Hydrology Model and, simultaneously, calibrating its parameters; (2) introducing GRACE observations on different spatial scales; (3) modelling observation errors as either spatially white or correlated in the assimilation procedure, and (4) replacing the standard EnKF algorithm by the square root analysis scheme or, alternatively, the singular evolutive interpolated Kalman filter. Results of a synthetic experiment designed for the Mississippi River Basin indicate that the hydrological parameters are sensitive to TWSA assimilation if spatial resolution of the observation data is sufficiently high. We find a significant influence of spatial error correlation on the adjusted water states and model parameters for all implemented filter variants, in particular for subbasins with a large discrepancy between observed and initially simulated TWSA and for north–south elongated sub-basins. Considering these correlated errors, however, does not generally improve results: while some metrics indicate that it is helpful to consider the full GRACE error covariance matrix, it appears to have an adverse effect on others. We conclude that considering the characteristics of GRACE error correlation is at least as important as the selection of the spatial discretisation of TWSA observations, while the choice of the filter method might rather be based on the computational simplicity and efficiency.


Correlated errors Assimilation Calibration Ensemble Kalman filter GRACE WaterGAP Global Hydrology Model 



The support of the German Research Foundation (DFG) within the framework of the Special Priority Program “Mass transport and mass distribution in the system Earth” (SPP1257) under the project REGHYDRO and BAYES-G is gratefully acknowledged. We further acknowledge the helpful suggestions of three anonymous reviewers and of the editors Pavel Ditmar and Roland Klees.


  1. Burgers G, Van Leeuwen PJ, Evensen G (1998) Analysis scheme in the ensemble Kalman filter. Mon Weather Rev 126:1719–1724. doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
  2. Collilieux X, Van Dam T, Ray J, Coulot D, Metivier L, Altamimi Z (2011) Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J Geod 86:1–14. doi: 10.1007/s00190-011-0487-6 CrossRefGoogle Scholar
  3. Crow WT, Van Loon E (2006) Impact of incorrect model error assumptions on the sequential assimilation of remotely sensed surface soil moisture. J Hydrometeor 7:421–432. doi: 10.1175/JHM499.1 CrossRefGoogle Scholar
  4. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 207:105–134. doi: 10.1016/S0022-1694(02)00283-4 CrossRefGoogle Scholar
  5. Döll P, Hoffmann-Dobrev H, Portmann FT, Siebert S, Eicker A, Rodell M, Strassberg G, Scanlon B (2012) Impact of water withdrawals from groundwater and surface water on continental water storage variations. J Geodyn 59–60:143–156. doi: 10.1016/j.jog.2011.05.001 CrossRefGoogle Scholar
  6. Döll P, Müller Schmied H, Schuh C, Portmann FT, Eicker A (2014) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res 50(7):5698–5720. doi: 10.1002/2014WR015595 CrossRefGoogle Scholar
  7. Eicker A, Schumacher M, Kusche J, Döll P, Müller Schmied H (2014) Calibration/data assimilation approach for integrating GRACE data into the WaterGAP global hydrology model (WGHM) using an ensemble Kalman filter: first results. Surv Geophys 35(6):1285–1309. doi: 10.1007/s10712-014-9309-8 CrossRefGoogle Scholar
  8. Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):10143–10162. doi: 10.1029/94JC00572 CrossRefGoogle Scholar
  9. Evensen G, Van Leeuwen PJ (2000) An ensemble Kalman smoother for nonlinear dynamics. Mon Wea Rev 128:1852–1867. doi: 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2
  10. Evensen G (2004) Sampling strategies and square root analysis schemes for the EnKF. Ocean Dynam 54:539–560. doi: 10.1007/s10236-004-0099-2 CrossRefGoogle Scholar
  11. Evensen G (2007) Data assimilation. The Ensemble Kalman Filter. Springer, BerlinGoogle Scholar
  12. Famiglietti JS, Rodell M (2013) Water in the balance. Science 340:1300–1301. doi: 10.1126/science.1236460 CrossRefGoogle Scholar
  13. Flechtner F, Thomas M, Dobslaw H (2010) Improved non-tidal atmospheric and oceanic de-aliasing for GRACE and SLR satellites. Adv Technol Earth Sci 2:131–142. doi: 10.1007/978-3-642-10228-8_11
  14. Forman BA, Reichle RH, Rodell M (2012) Assimilation of terrestrial water storage from GRACE in a snow-dominated basin. Water Resour Res 48:W01507. doi: 10.1029/2011WR011239 CrossRefGoogle Scholar
  15. Forman BA, Reichle RH (2013) The spatial scale of model errors and assimilated retrievals in a terrestrial water storage assimilation system. Water Resour Res 49:7457–7468. doi: 10.1002/2012WR012885 CrossRefGoogle Scholar
  16. Forootan E, Kusche J (2012) Separation of global time-variable gravity signals into maximally independent components. J Geod 86(7):477–497. doi: 10.1007/s00190-011-0532-5 CrossRefGoogle Scholar
  17. Forootan E, Didova O, Schumacher M, Kusche J, Elsaka B (2014) Comparisons of atmospheric mass variations derived from ECMWF reanalysis and operational fields, over 2003 to 2011. J Geod 88(5):503–514. doi: 10.1007/s00190-014-0696-x CrossRefGoogle Scholar
  18. Fritsche M, Döll P, Dietrich R (2012) Global-scale validation of model-based load deformations from water mass and atmospheric pressure variations using GPS. J Geodyn 59–60:133–142. doi: 10.1016/j.jog.2011.04.001 CrossRefGoogle Scholar
  19. Gupta HV, Sorooshian S, Yapo PO (1998) Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information. Water Resour Res 34(4):751–763. doi: 10.1029/97WR03495 CrossRefGoogle Scholar
  20. Hamill TM, Snyder C (2002) Using improved background-error covariances from an ensemble Kalman filter for adaptive observations. Mon Wea Rev 130:1552–1572. doi: 10.1175/1520-0493(2002)130<1552:UIBECF>2.0.CO;2
  21. Harris I, Jones P, Osborn T, Lister D (2013) Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 dataset. Int J Climatol 34(3):623-642. doi: 10.1002/joc.3711
  22. Hoteit I, Pham DT, Blum J (2002) A simplified reduced order Kalman filtering and application to altimetric data assimilation in Tropical Pacific. J Marine Syst 36:101–127. doi: 10.1016/S0924-7963(02)00129-X CrossRefGoogle Scholar
  23. Houborg R, Rodell M, Li B, Reichle RH, Zaitchik BF (2012) Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour Res 48:W07525. doi: 10.1029/2011WR011291 CrossRefGoogle Scholar
  24. Hunger M, Döll P (2008) Value of river discharge data for global-scale hydrological modeling. Hydrol Earth Syst Sci 12:841–861. doi: 10.5194/hess-12-841-2008 CrossRefGoogle Scholar
  25. Iman RL (2008) Latin Hypercube sampling. III, encyclopedia of quantitative risk analysis and assessment. doi: 10.1002/9780470061596.risk0299
  26. Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82(D):35–45Google Scholar
  27. Kaspar F (2004) Entwicklung und Unsicherheitsanalyse eines globalen hydrologischen Modells (in German). Dissertation, University of KasselGoogle Scholar
  28. Klees R, Revtova EA, Gunter BC, Ditmar P, Oudman E, Winsemius HC, Savenije HHG (2008) The design of an optimal filter for monthly GRACE gravity models. Geophys J Int 175(2):417–432. doi: 10.1111/j.1365-246X.2008.03922.x CrossRefGoogle Scholar
  29. Koch KR (1997) Parameterschätzung und Hypothesentests (in German). Dümmler, BonnGoogle Scholar
  30. Kurtenbach E, Mayer-Gürr T, Eicker A (2009) Deriving daily snapshots of the Earth’s gravity field from GRACE L1B data using Kalman filtering. Geophys Res Lett 36:L17102. doi: 10.1029/2009GL039564 CrossRefGoogle Scholar
  31. Kusche J (2003) A Monte-Carlo technique for weight estimation in satellite geodesy. J Geod 76(11–12):641–652. doi: 10.1007/s00190-002-0302-5 CrossRefGoogle Scholar
  32. Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod 81:733–749. doi: 10.1007/s00190-007-0143-3 CrossRefGoogle Scholar
  33. Kusche J, Schmidt R, Petrovic S, Rietbroek R (2009) Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. J Geodesy 83(10):903–913. doi: 10.1007/s00190-009-0308-3 CrossRefGoogle Scholar
  34. Kusche J, Klemann V, Bosch W (2012) Mass distribution and mass transport in the Earth system. J Geodynam 59–60:1–8. doi: 10.1016/j.jog.2012.03.003 CrossRefGoogle Scholar
  35. Le Dimet FX, Talagrand O (1986) Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus 38A:97–110. doi: 10.1111/j.1600-0870.1986.tb00459.x CrossRefGoogle Scholar
  36. Li B, Rodell M, Zaitchik BF, Reichle RH, Koster RD, Van Dam TM (2012) Assimilation of GRACE terrestrial water storage into a land surface model: evaluation and potential value for drought monitoring in western and central Europe. J Hydrol 446–447:103–115. doi: 10.1016/j.jhydrol.2012.04.035 CrossRefGoogle Scholar
  37. Liu Y, Weerts AH, Clark M, Hendricks Franssen HJ, Kumar S, Moradkhani H, Seo DJ, Schwanenberg D, Smith P, Van Dijk AIJM, Van Velzen N, He M, Lee H, Noh SJ, Rakovec O, Restrepo P (2012) Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities. Hydrol Earth Syst Sci 16:3863–3887. doi: 10.5194/hess-16-3863-2012 CrossRefGoogle Scholar
  38. Longuevergne L, Scanlon BR, Wilson CR (2010) GRACE hydrological estimates for small basins: evaluating processing approaches on the high plains aquifer. USA. Water Resour Res 46:W11517. doi: 10.1029/2009WR008564 Google Scholar
  39. Moradkhani H, Hsu K, Hong Y, Sorooshian S (2006) Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting. Geophys Res Lett 33:L12401. doi: 10.1029/2006GL026855 CrossRefGoogle Scholar
  40. Müller Schmied H, Eisner S, Franz D, Wattenbach M, Portmann FT, Flörke M, Döll P (2014) Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol Earth Syst Sci 18:3511–3538. doi: 10.5194/hess-18-3511-2014 CrossRefGoogle Scholar
  41. Nerger L (2003) Parallel filter algorithms for data assimilation in oceanography. PhD thesis, University of Bremen, GermanyGoogle Scholar
  42. Pham DT, Verron J, Roubaud MC (1998) A singular evolutive extended Kalman filter for data assimilation in oceanography. J Marine Syst 16(3–4):323–340. doi: 10.1016/S0924-7963(97)00109-7 CrossRefGoogle Scholar
  43. Pierce R, Leitch J, Stephens M, Bender P, Nerem R (2008) Intersatellite range monitoring using optical interferometry. Appl Optics 47(27):5007–5019. doi: 10.1364/AO.47.005007 CrossRefGoogle Scholar
  44. Reichle RH, Koster RD (2003) Assessing the impact of horizontal error correlations in background fields on soil moisture estimation. J Hydrometeorol 4(6):1229–1242. doi: 10.1175/1525-7541(2003)004<1229:ATIOHE>2.0.CO;2
  45. Ripley BD (1987) Stochastic simulation. Wiley, New YorkCrossRefGoogle Scholar
  46. Rodell M, Chen J, Kato H, Famiglietti JS, Nigro J, Wilson CR (2007) Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J 15(1):159–166. doi: 10.1007/s10040-006-0103-7 CrossRefGoogle Scholar
  47. Sakumura C, Bettadpur S, Bruinsma S (2014) Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models. Geophys Res Lett 41:1389–1397. doi: 10.1002/2013GL058632 CrossRefGoogle Scholar
  48. Schmidt R, Flechtner F, Meyer U, Neumayer KH, Dahle C, Koenig R, Kusche J (2008) Hydrological signals observed by the GRACE satellites. Surv Geophys 29:319–334. doi: 10.1007/s10712-008-9033-3 CrossRefGoogle Scholar
  49. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2014) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115:15–40. doi: 10.1007/s00704-013-0860-x CrossRefGoogle Scholar
  50. Schrama EJO, Wouters B, Lavallee DD (2007) Signal and noise in Gravity Recovery and Climate Experiment (GRACE) observed surface mass observations. J Geophys Res 112:B08407. doi: 10.1029/2006JB004882 CrossRefGoogle Scholar
  51. Schumacher M, Eicker A, Kusche J, Müller Schmied H, Döll P (2015) Covariance analysis and sensitivity studies for GRACE assimilation into WGHM. IAG Symp 143. doi: 10.1007/1345_2015_119
  52. Strassberg G, Scanlon BR, Chambers D (2009) Evaluation of groundwater storage monitoring with the GRACE satellite: case study of the High Plains aquifer, central United States. Water Resour Res 45:W05410. doi: 10.1029/2008WR006892 CrossRefGoogle Scholar
  53. Su H, Yang ZL, Dickinson RE, Wilson CR, Niu GY (2010) Multisensor snow data assimilation at the continental scale: the value of gravity recovery and climate experiment terrestrial water storage information. J Geophys Res 115:D10104. doi: 10.1029/2009JD013035 CrossRefGoogle Scholar
  54. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi: 10.1029/2005GL025285 Google Scholar
  55. Tangdamrongsub N, Steele-Dunne SC, Gunter BC, Ditmar PG, Weerts AH (2015) Data assimilation of GRACE terrestrial water storage estimates into a regional hydrological model of the Rhine River basin. Hydrol Earth Syst Sci 19:2079–2100. doi: 10.5194/hess-19-2079-2015 CrossRefGoogle Scholar
  56. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi: 10.1029/2004GL019920 CrossRefGoogle Scholar
  57. Tippett MK, Anderson JL, Bishop CH, Hamill TM, Whitaker JS (2003) Ensemble Square Root Filters. Mon Wea Rev 131:1485–1490. doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2
  58. Van Dijk AIJM, Renzullo LJ, Wada Y, Tregoning P (2014) A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrol Earth Syst Sci 18:2955–2973. doi: 10.5194/hess-18-2955-2014 CrossRefGoogle Scholar
  59. Wahr JM, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 108(B12):30205–30229. doi: 10.1029/98JB02844
  60. Wahr J, Swenson S, Velicogna I (2006) Accuracy of GRACE mass estimates. Geophys Res Lett 33:L06401. doi: 10.1029/2005GL025305 CrossRefGoogle Scholar
  61. Weedon GP, Balsamo G, Bellouin N, Gomes S, Best MJ, Viterbo P (2014) The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour Res 50(9):7505–7514. doi: 10.1002/2014WR015638 CrossRefGoogle Scholar
  62. Werth S, Güntner A (2010) Calibration analysis for water storage variability of the global hydrological model WGHM. Hydrol Earth Syst Sci 14:59–78. doi: 10.5194/hess-14-59-2010 CrossRefGoogle Scholar
  63. Whitaker JS, Hamill TM (2002) Ensemble data assimilation without perturbed observations. Mon Weather Rev 130:1913–1924. doi: 10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
  64. Wouters B, Bonin JA, Chambers DP, Riva REM, Sasgen I, Wahr J (2014) GRACE, time-varying gravity, Earth system dynamics and climate change. Rep Prog Phys 77:116801. doi: 10.1088/0034-4885/77/11/116801 CrossRefGoogle Scholar
  65. Zaitchik BF, Rodell M, Reichle RH (2008) Assimilation of GRACE terrestrial water storage data into a land surface model: results for the Mississippi River Basin. J Hydrometeorol 9(3):535–548. doi: 10.1175/2007JHM951.1 CrossRefGoogle Scholar
  66. Zenner L, Bergmann-Wolf I, Dobslaw H, Gruber T, Güntner A, Wattenbach M, Esselborn S, Dill R (2014) Comparison of daily GRACE gravity field and numerical water storage models for de-aliasing of satellite gravimetry observations. Surv Geophys 35(6):1251–1266. doi: 10.1007/s10712-014-9295-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Geodesy and GeoinformationUniversity of BonnBonnGermany
  2. 2.Institute of Physical GeographyUniversity of Frankfurt/MainFrankfurt am MainGermany

Personalised recommendations