Journal of Geodesy

, Volume 90, Issue 4, pp 343–364 | Cite as

Absolute IGS antenna phase center model igs08.atx: status and potential improvements

  • R. Schmid
  • R. Dach
  • X. Collilieux
  • A. Jäggi
  • M. Schmitz
  • F. Dilssner
Original Article

Abstract

On 17 April 2011, all analysis centers (ACs) of the International GNSS Service (IGS) adopted the reference frame realization IGS08 and the corresponding absolute antenna phase center model igs08.atx for their routine analyses. The latter consists of an updated set of receiver and satellite antenna phase center offsets and variations (PCOs and PCVs). An update of the model was necessary due to the difference of about 1 ppb in the terrestrial scale between two consecutive realizations of the International Terrestrial Reference Frame (ITRF2008 vs. ITRF2005), as that parameter is highly correlated with the GNSS satellite antenna PCO components in the radial direction.

For the receiver antennas, more individual calibrations could be considered and GLONASS-specific correction values were added. For the satellite antennas, all correction values except for the GPS PCVs were newly estimated considering more data than for the former model. Satellite-specific PCOs for all GPS satellites active since 1994 could be derived from reprocessed solutions of five ACs generated within the scope of the first IGS reprocessing campaign. Two ACs separately derived a full set of corrections for all GLONASS satellites active since 2003.

Ignoring scale-related biases, the accuracy of the satellite antenna PCOs is on the level of a few cm. With the new phase center model, orbit discontinuities at day boundaries can be reduced, and the consistency between GPS and GLONASS results is improved. To support the analysis of low Earth orbiter (LEO) data, igs08.atx was extended with LEO-derived PCV estimates for big nadir angles in June 2013.

Keywords

Receiver antenna calibration Satellite antenna phase center corrections International GNSS Service (IGS) Global navigation satellite systems (GNSS) GPS GLONASS 

Notes

Acknowledgments

We would like to thank all the various components of the IGS, especially those ACs providing satellite antenna PCO estimates within their reprocessed SINEX files. We are grateful to Paul Rebischung who computed the final set of individual AC z-PCO time series supplied by IGN as well as the updated z-PCOs provided in Table 6. We also thank Matt King and three anonymous reviewers for their valuable comments on this manuscript.

References

  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the International Terrestrial Reference Frame for Earth science applications. J Geophys Res 107(B10):2214. doi:10.1029/2001JB000561 Google Scholar
  2. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112(B9):B09401. doi:10.1029/2007JB004949
  3. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  4. Baire Q, Bruyninx C, Legrand J, Pottiaux E, Aerts W, Defraigne P, Bergeot N, Chevalier JM (2014) Influence of different GPS receiver antenna calibration models on geodetic positioning. GPS Solut 18(4):529–539. doi:10.1007/s10291-013-0349-1 CrossRefGoogle Scholar
  5. Boehm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(7):L07304. doi:10.1029/2005GL025546 CrossRefGoogle Scholar
  6. Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10):679–683. doi:10.1007/s00190-007-0135-3 CrossRefGoogle Scholar
  7. Cardellach E, Elósegui P, Davis JL (2007) Global distortion of GPS networks associated with satellite antenna model errors. J Geophys Res 112(B7):B07405. doi:10.1029/2006JB004675 Google Scholar
  8. Collilieux X, Métivier L, Altamimi Z, van Dam T, Ray J (2011) Quality assessment of GPS reprocessed terrestrial reference frame. GPS Solut 15(3):219–231. doi:10.1007/s10291-010-0184-6 CrossRefGoogle Scholar
  9. Collilieux X, van Dam T, Ray J, Coulot D, Métivier L, Altamimi Z (2012) Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J Geod 86(1):1–14. doi:10.1007/s00190-011-0487-6 CrossRefGoogle Scholar
  10. Collilieux X, Schmid R (2013) Evaluation of the ITRF2008 GPS vertical velocities using satellite antenna \(z\)-offsets. GPS Solut 17(2):237–246. doi:10.1007/s10291-012-0274-8 CrossRefGoogle Scholar
  11. Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern. Available at http://www.bernese.unibe.ch/docs50/DOCU50.pdf
  12. Dach R, Schmid R, Schmitz M, Thaller D, Schaer S, Lutz S, Steigenberger P, Wübbena G, Beutler G (2011) Improved antenna phase center models for GLONASS. GPS Solut 15(1):49–65. doi:10.1007/s10291-010-0169-5 CrossRefGoogle Scholar
  13. Dilssner F, Springer T, Flohrer C, Dow J (2010) Estimation of phase center corrections for GLONASS-M satellite antennas. J Geod 84(8):467–480. doi:10.1007/s00190-010-0381-7 CrossRefGoogle Scholar
  14. Dilssner F, Otten M, Springer T, Flohrer C, Svehla D, Zandbergen R (2011) GPS satellite antenna parameters from combined ground-based and space-borne data processing. EGU2011-12263, European Geosciences Union General Assembly 2011, ViennaGoogle Scholar
  15. Dilssner F, Springer T, Schmid R, Enderle W (2012) Estimation of azimuthal satellite antenna phase center variations. IGS Workshop 2012, Olsztyn, PolandGoogle Scholar
  16. Dilssner F, Springer T, Schönemann E, Enderle W (2014) Estimation of satellite antenna phase center corrections for BeiDou. IGS Workshop 2014, Pasadena, CAGoogle Scholar
  17. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198. doi:10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  18. Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first Earth Explorer Core mission. Space Sci Rev 108(1–2):419–432. doi:10.1023/A:1026104216284 CrossRefGoogle Scholar
  19. Edwards PG, Berruti B, Blythe P, Callies J, Carlier S, Fransen C, Krutsch R, Lefebvre A-R, Loiselet M, Stricker N (2006) The MetOp satellite: weather information from polar orbit. ESA Bulletin 127: 8–17Google Scholar
  20. Ferland R (2003) IGS00(v2) final. IGSMAIL-4666, IGS Central Bureau, PasadenaGoogle Scholar
  21. Fritsche B, Ivanov M, Kashkovsky A, Koppenwallner G, Kudryavtsev A, Voskoboinikov U, Zhukova G (1998) Radiation pressure forces on complex spacecraft. ESOC contract no. 11908/96/D/IM, Hypersonic Technology Göttingen (HTG)Google Scholar
  22. Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32(23):L23311. doi:10.1029/2005GL024342 CrossRefGoogle Scholar
  23. Gendt G (2006) IGS switch to absolute antenna model and ITRF2005. IGSMAIL-5438, IGS Central Bureau, PasadenaGoogle Scholar
  24. Haines B, Bar-Sever Y, Bertiger W, Desai SD, Harvey N, Weiss JP (2010) Improved models of the GPS satellite antenna phase- and group-delay variations using data from low-Earth orbiters. Abstract G54A-05, 2010 AGU Fall Meeting, San Francisco, CAGoogle Scholar
  25. Haines BJ, Bar-Sever YE, Bertiger WI, Desai SD, Harvey N, Sibois AE, Weiss JP (2015) Realizing a terrestrial reference frame using the Global Positioning System. J Geophys Res 120(8):5911–5939. doi:10.1002/2015JB012225 CrossRefGoogle Scholar
  26. Jäggi A, Hugentobler U, Beutler G (2006) Pseudo-stochastic orbit modeling techniques for low-Earth orbiters. J Geod 80(1):47–60. doi:10.1007/s00190-006-0029-9 CrossRefGoogle Scholar
  27. Jäggi A, Dach R, Montenbruck O, Hugentobler U, Bock H, Beutler G (2009) Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J Geod 83(12):1145–1162. doi:10.1007/s00190-009-0333-2 CrossRefGoogle Scholar
  28. Jäggi A, Dilssner F, Schmid R, Dach R, Springer T, Bock H, Steigenberger P, Lutz S (2012) Extension of the GPS satellite antenna patterns to nadir angles beyond \(14^{\circ }\). IGS Workshop 2012, Olsztyn, PolandGoogle Scholar
  29. Jarlemark P, Emardson R, Johansson J, Elgered G (2010) Ground-based GPS for validation of climate models: the impact of satellite antenna phase center variations. IEEE Trans Geosci Remote Sens 48(10):3847–3854. doi:10.1109/TGRS.2010.2049114 CrossRefGoogle Scholar
  30. Kaniuth K, Stuber K (2002) The impact of antenna radomes on height estimates in regional GPS networks. In: Drewes H, Dodson A, Fortes LPS, Sánchez L, Sandoval P (eds) Vertical Reference Systems. IAG Symposia 124:101–106. doi:10.1007/978-3-662-04683-8_20
  31. Lambin J, Morrow R, Fu L-L, Willis JK, Bonekamp H, Lillibridge J, Perbos J, Zaouche G, Vaze P, Bannoura W, Parisot F, Thouvenot E, Coutin-Faye S, Lindstrom E, Mignogno M (2010) The OSTM/Jason-2 mission. Mar Geod 33(Supp 1):4–25. doi:10.1080/01490419.2010.491030 CrossRefGoogle Scholar
  32. Mader GL (1999) GPS antenna calibration at the National Geodetic Survey. GPS Solut 3(1):50–58. doi:10.1007/PL00012780 CrossRefGoogle Scholar
  33. Montenbruck O, Steigenberger P, Khachikyan R, Weber G, Langley RB, Mervart L, Hugentobler U (2014) IGS-MGEX: Preparing the ground for multi-constellation GNSS science. Inside GNSS 9(1):42–49Google Scholar
  34. Montenbruck O, Schmid R, Mercier F, Steigenberger P, Noll C, Fatkulin R, Kogure S, Ganeshan AS (2015) GNSS satellite geometry and attitude models. Adv Space Res 56(6):1015–1029. doi:10.1016/j.asr.2015.06.019 CrossRefGoogle Scholar
  35. Ortiz de Galisteo JP, Toledano C, Cachorro V, Torres B (2010) Improvement in PWV estimation from GPS due to the absolute calibration of antenna phase center variations. GPS Solut 14(4):389–395. doi:10.1007/s10291-010-0163-y CrossRefGoogle Scholar
  36. Prange L, Jäggi A, Dach R, Bock H, Beutler G, Mervart L (2010) AIUB-CHAMP02S: The influence of GNSS model changes on gravity field recovery using spaceborne GPS. Adv Space Res 45(2):215–224. doi:10.1016/j.asr.2009.09.020 CrossRefGoogle Scholar
  37. Ray J (2011) Reminder: switch to IGS08 / igs08.atx on 17 April 2011. IGSMAIL-6384. IGS Central Bureau, PasadenaGoogle Scholar
  38. Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494. doi:10.1007/s10291-011-0248-2 CrossRefGoogle Scholar
  39. Rothacher M, Schmid R (2010) ANTEX: the antenna exchange format, version 1.4. IGS Central Bureau, Pasadena. Available at ftp://ftp.igs.org/pub/station/general/antex14.txt
  40. Saastamoinen J (1973) Contributions to the theory of atmospheric refraction. Bull Géod 107(1):13–34. doi:10.1007/BF02522083 CrossRefGoogle Scholar
  41. Schaer S, Meindl M (2011) Consideration of station-specific intersystem translation parameters at CODE. In: Proc EUREF Symposium 2011, Chisinau, Moldova. Available at http://www.euref.eu/symposia/2011Chisinau/04-02-p-Schaer.pdf
  42. Schmid R, Rothacher M (2003) Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites. J Geod 77(7–8):440–446. doi:10.1007/s00190-003-0339-0 CrossRefGoogle Scholar
  43. Schmid R, Rothacher M, Thaller D, Steigenberger P (2005) Absolute phase center corrections of satellite and receiver antennas: impact on global GPS solutions and estimation of azimuthal phase center variations of the satellite antenna. GPS Solut 9(4):283–293. doi:10.1007/s10291-005-0134-x CrossRefGoogle Scholar
  44. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798. doi:10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  45. Schmid R, Dilssner F, Collilieux X, Khachikyan R (2010) igs05_1602.atx—update including estimated Block IIF satellite antenna corrections. IGSMAIL-6271, IGS Central Bureau, PasadenaGoogle Scholar
  46. Schmid R (2011) Upcoming switch to IGS08/igs08.atx—details on igs08.atx. IGSMAIL-6355, IGS Central Bureau, PasadenaGoogle Scholar
  47. Schmid R (2014) IGS Antenna Working Group. In: Dach R, Jean Y (eds) IGS Technical Report 2013. IGS Central Bureau, Pasadena, pp 133–136Google Scholar
  48. Schmid R (2015) Antenna Working Group Technical Report 2014. In: Jean Y, Dach R (eds) IGS Technical Report 2014, IGS Central Bureau, Pasadena, pp 129–132Google Scholar
  49. Schmitz M, Wübbena G, Propp M (2008) Absolute robot-based GNSS antenna calibration—features and findings. Proc Internat Symposium on GNSS. Space-based and Ground-based Augmentation Systems and Applications, Berlin, Germany, pp 52–54Google Scholar
  50. Springer TA (2009) NAPEOS – Mathematical models and algorithms. Technical note, DOPS-SYS-TN-0100-OPS-GN. Available at ftp://dgn6.esoc.esa.int/napeos/DOPS-SYS-TN-0100-OPS-GN-MathModels.pdf
  51. Springer T, Dilssner F (2009) SVN49 and other GPS anomalies. Inside GNSS 4(4):32–36Google Scholar
  52. Steigenberger P, Rothacher M, Schmid R, Rülke A, Fritsche M, Dietrich R, Tesmer V (2009) Effects of different antenna phase center models on GPS-derived reference frames. In: Drewes H (ed) Geodetic Reference Frames, IAG Symposia 134: 83–88. doi:10.1007/978-3-642-00860-3_13
  53. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. doi:10.1029/2004GL019920 CrossRefGoogle Scholar
  54. Thomas ID, King MA, Clarke PJ, Penna NT (2011) Precipitable water vapor estimates from homogeneously reprocessed GPS data: an intertechnique comparison in Antarctica. J Geophys Res 116:D04107. doi:10.1029/2010JD013889 Google Scholar
  55. Willis P, Slater J, Beutler G, Gurtner W, Noll C, Weber R, Neilan RE, Hein G (2000) The IGEX-98 campaign: highlights and perspective. In: Schwarz K-P (ed) Geodesy Beyond 2000, IAG Symposia 121:22–25. doi:10.1007/978-3-642-59742-8_4
  56. Wu X, Collilieux X, Altamimi Z, Vermeersen BLA, Gross RS, Fukumori I (2011) Accuracy of the International Terrestrial Reference Frame origin and Earth expansion. Geophys Res Lett 38(13):L13304. doi:10.1029/2011GL047450 CrossRefGoogle Scholar
  57. Wübbena G, Schmitz M, Menge F, Böder V, Seeber G (2000) Automated absolute field calibration of GPS antennas in real-time. Proc ION-GPS00. Salt Lake City, UT, pp 2512–2522Google Scholar
  58. Wübbena G, Schmitz M, Boettcher G, Schumann C (2008) Absolute GNSS antenna calibration with a robot: repeatability of phase variations, calibration of GLONASS and determination of carrier-to-noise pattern. In: Springer T, Gendt G, Dow JM (eds) Proc IGS 2006 Workshop. Darmstadt, GermanyGoogle Scholar
  59. Zeimetz P (2010) Zur Entwicklung und Bewertung der absoluten GNSS-Antennenkalibrierung im HF-Labor. PhD thesis, University of Bonn. Available at http://hss.ulb.uni-bonn.de/2010/2212/2212.pdf
  60. Zhu SY, Massmann F-H, Yu Y, Reigber C (2003) Satellite antenna phase center offsets and scale errors in GPS solutions. J Geod 76(11–12):668–672. doi:10.1007/s00190-002-0294-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut für Astronomische und Physikalische Geodäsie (IAPG)Technische Universität MünchenMünchenGermany
  2. 2.Deutsches Geodätisches Forschungsinstitut (DGFI-TUM)Technische Universität MünchenMünchenGermany
  3. 3.Astronomical InstituteUniversity of BernBernSwitzerland
  4. 4.IGN/LAREGUniversité Paris DiderotParis Cedex 13France
  5. 5.Geo++ GmbHGarbsenGermany
  6. 6.European Space Operations Centre (ESOC)DarmstadtGermany

Personalised recommendations