Journal of Geodesy

, Volume 90, Issue 3, pp 209–228 | Cite as

Determination of differential code biases with multi-GNSS observations

  • Ningbo Wang
  • Yunbin Yuan
  • Zishen Li
  • Oliver Montenbruck
  • Bingfeng Tan
Original Article


In order to better understand the differential code biases (DCBs) of global navigation satellite system, the IGGDCB method is extended to estimate the intra- and inter-frequency biases of the global positioning system (GPS), GLONASS, BeiDou navigation satellite system (BDS), and Galileo based on observations collected by the multi-GNSS experiment (MGEX) of the international GNSS service (IGS). In the approach of IGGDCB, the local ionospheric total electronic content is modeled with generalized triangular series (GTS) function rather than using a global ionosphere model or a priori ionospheric information. The DCB estimated by the IGGDCB method is compared with the DCB products from the Center for Orbit Determination in Europe (CODE) and German Aerospace Center (DLR), as well as the broadcast timing group delay (TGD) parameters over a 2-year span (2013 and 2014). The results indicate that GPS and GLONASS intra-frequency biases obtained in this work show the same precision levels as those estimated by DLR (about 0.1 and 0.2–0.4 ns for the two constellations, respectively, with respect to the products of CODE). The precision levels of IGGDCB-based inter-frequency biases estimated over the 24-month period are about 0.29 ns for GPS, 0.56 ns for GLONASS, 0.36 ns for BDS, and 0.24 ns for Galileo, respectively. Here, the accuracies of GPS and GLONASS biases are assessed relative to the products of CODE, while those of BDS and Galileo are compared with the estimates of DLR. In addition, the monthly stability indices of IGGDCB-based DCBs are 0.11 (GPS), 0.18 (GLONASS), 0.17 (BDS), and 0.14 (Galileo) ns for the individual constellation.


Multi-GNSS experiment (MGEX) Differential code bias (DCB) Timing group delay (TGD) Intra-frequency bias Inter-frequency bias IGGDCB Total electronic content (TEC) 



The authors are grateful to the editor-in-chief (Roland Klees), the associate editor (Pascal Willis) and the three anonymous reviewers for the editorial feedback and valuable suggestions. We would like to acknowledge the IGS Multi-GNSS Experiment (MGEX), International GNSS Monitoring and Assessment System (iGMAS), Center for Orbit Determination in Europe (CODE) and German Aerospace Center (DLR) for providing access to GNSS data and differential code bias (DCB) products. We also acknowledge Dr. Ying Li for helping to revise this paper, Bruno Garayt and Carey Noll for coordinating and helping with the delivery of our MGEX DCB products to the IGS IGN and CDDIS ftp archive, and the funding supports by National 973 (No. 2012CB825604), China Natural Science Funds (No. 41231064, 41304034, 41104012 and 41621063), Beijing Natural Science Foundation (No. 4144094), the CAS/SAFEA International Partnership Program for Creative Research Teams (KZZD-EW-TZ-05) and the State Key Laboratory of Geodesy and Earth’s Dynamics (Institute of Geodesy and Geophysics, CAS) (SKLGED2014-3-1-E).


  1. Arikan F, Nayir H, Sezen U, Arikan O (2008) Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Sci 43(4). doi: 10.1029/2007rs003785
  2. CSNO (2013) BeiDou navigation satellite system signal in space interface control document-open service signal (Version 2.0). China Satellite Navigation Office, Dec 2013Google Scholar
  3. Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–365CrossRefGoogle Scholar
  4. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4):191–198CrossRefGoogle Scholar
  5. Feltens J (2003a) The international GPS service (IGS) ionosphere working group. Adv Space Res 31(3):635–644CrossRefGoogle Scholar
  6. Feltens J (2003b) The activities of the ionosphere working group of the International GPS Service (IGS). GPS Solut 7(1):41–46CrossRefGoogle Scholar
  7. Gao Y, Lahaye F, Heroux P, Liao X, Beck N, Olynik M (2001) Modeling and estimation of C1–P1 bias in GPS receivers. J Geod 74(9):621–626CrossRefGoogle Scholar
  8. Guo F, Zhang X, Wang J (2015) Timing group delay and differential code bias corrections for BeiDou positioning. J Geod 89(5):427–445CrossRefGoogle Scholar
  9. Hauschild A, Montenbruck O (2014) A study on the dependency of GNSS pseudorange biases on correlator spacing. GPS Solut. doi: 10.1007/s10291-014-0426-0
  10. Hernández-Pajares M, Juan JM, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Sol-Terr Phys 61(16):1237–1247CrossRefGoogle Scholar
  11. Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275CrossRefGoogle Scholar
  12. Hernández-Pajares M, Juan JM, Sanz J, Aragón-Àngel À, García-Rigo A, Salazar D, Escudero M (2011) The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J Geod 85(12):887–907CrossRefGoogle Scholar
  13. IGS (2012) IGS Technical Report 2011. University of Berne, Astronomical Institute, Switzerland, July 2012Google Scholar
  14. I GS (2013) RINEX: the receiver independent exchange format (Version 3.02). IGS Central 2013Google Scholar
  15. IS-GPS-200 (2012) Navistar GPS Space Segment/Navigation User Segment Interfaces (IS-GPS-200, Revision G). Glob Position Syst DirectGoogle Scholar
  16. Juan JM, Rius A, Hernandez-Pajares M, Sanz J (1997) A two-layer model of the ionosphere using global positioning system data. Geophys Res Lett 24(4):393–396CrossRefGoogle Scholar
  17. Keshin M (2011) A new algorithm for single receiver DCB estimation using IGS TEC maps. GPS Solut 16(3):283–292. doi: 10.1007/s10291-011-0230-z CrossRefGoogle Scholar
  18. Krankowski A, Shagimuratov II, Ephishov II, Krypiak-Gregorczyk A, Yakimova G (2009) The occurrence of the mid-latitude ionospheric trough in GPS-TEC measurements. Adv Space Res 43(11):1721–1731CrossRefGoogle Scholar
  19. Leandro RF, Langley RB, Santos MC (2007) Estimation of P2-C2 biases by means of Precise Point Positioning. In: Proceedings of the 63rd annual meeting of the Institute of Navigation, Cambridge, 23-25 Apr, pp 225–231Google Scholar
  20. Li H, Xu T, Li B, Huang S, Wang J (2015a) A new differential code bias (C1–P1) estimation method and its performance evaluation. GPS Solut. doi: 10.1007/s10291-015-0438-4
  21. Li Z, Yuan Y, Li H, Ou J, Huo X (2012) Two-step method for the determination of the differential code biases of COMPASS satellites. J Geod 86(11):1059–1076CrossRefGoogle Scholar
  22. Li Z, Yuan Y, Fan L, Huo X, Hsu H (2014) Determination of the Differential Code Bias for Current BDS Satellites. IEEE Trans Geosci Remote Sens 52(7):3968–3979CrossRefGoogle Scholar
  23. Li Z, Yuan Y, Wang N, Hernandez-Pajares M, Huo X (2015b) SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. J Geod 89(4):331–345CrossRefGoogle Scholar
  24. Lucas Rodriguez R (2013) Galileo IOV status and results. In: Proceedings of ION GNSS 2013, Nashville, 16-20 Sep, pp 3065–3093Google Scholar
  25. Mannucci A, Wilson B, Yuan D, Ho C, Lindqwister U, Runge T (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–582CrossRefGoogle Scholar
  26. Montenbruck O, Hauschild A (2013) Code biases in multi-GNSS point positioning. In: Proceedings of ION ITM 2013, San DiegoGoogle Scholar
  27. Montenbruck O, Steigenberger P, Khachikyan R, Weber G, Langley R, Mervart L, Hugentobler U (2013) IGS-MGEX: preparing the ground for multi-constellation GNSS science. Inside GNSS 9(1):42–49Google Scholar
  28. Montenbruck O, Hauschild A, Steigenberger P (2014) Differential Code Bias Estimation using Multi-GNSS Observations and Global Ionosphere Maps. Navigation 61(3):191–201CrossRefGoogle Scholar
  29. OS-SIS-ICD (2010) European GNSS open service signal in space interface control document (OS-SIS-ICD, Issue 1.1). European Union, Sep 2010Google Scholar
  30. Rizos C, Montenbruck O, Weber R, Weber G, Neilan R, Hugentobler U (2013) The IGS MGEX experiment as a milestone for a comprehensive multi-GNSS service. In: Proceedings of ION PNT 2013, HonoluluGoogle Scholar
  31. Sardón E, Zarraoa N (1997) Estimation of total electron content using GPS data: how stable are the differential satellite and receiver instrumental biases? Radio Sci 32(5):1899–1910CrossRefGoogle Scholar
  32. Schaer S (1999) Mapping and predicting the earth’s ionosphere using the global positioning system. Ph.D Dissertation, University of Berne, SwitzerlandGoogle Scholar
  33. Schaer S (2000) Monitoring (P1-C1) code biases. IGS Mail No. 2827, 9 MayGoogle Scholar
  34. Schaer S (2012a) Overview of GNSS biases. In: Proceedings of IGS Workshop on GNSS Biases, University of Bern, SwitzerlandGoogle Scholar
  35. Schaer S (2012b) Activities of IGS Bias and Calibration Working Group. In: Meindl M, Dach R, Jean Y (eds) IGS Technical Report 2011. University of Berne, Astronomical Institute, Switzerland, pp 139–154Google Scholar
  36. Steigenberger P, Montenbruck O, Hessel U (2015) Performance Evaluation of the Early CNAV Navigation Message. In: Proceedings of ION ITM 2015, 26–28 Jan. Dana Point, USA, pp 155–163Google Scholar
  37. Wang G, de Jong K, Zhao Q, Hu Z, Guo J (2014) Multipath analysis of code measurements for BeiDou geostationary satellites. GPS Solut 19(1):129–139. doi: 10.1007/s10291-014-0374-8 CrossRefGoogle Scholar
  38. Willis P, Beutler G, Gurtner W, Hein G, Neilan R, Noll C, Slater J (1999) IGEX: International GLONASS Experiment-scientific objectives and preparation. Adv Space Res 23(4):659–663CrossRefGoogle Scholar
  39. Wilson BD, Mannucci AJ (1993) Instrumental Biases in Ionospheric Measurements Derived from GPS Data. In: Proceedings of the ION GPS-93, Salt Lake City, USA, 22–24 Sep, pp 1343–1351Google Scholar
  40. Wilson B, Yinger C, Feess W, Shank C (1999) New and improved: the broadcast interfrequency biases. GPS World 10(9):56–66Google Scholar
  41. Yuan Y, Ou J (2004) A generalized trigonometric series function model for determining ionospheric delay. Prog Nat Sci 14(11):1010–1014CrossRefGoogle Scholar
  42. Zhang B, Ou J, Yuan Y, Li Z (2012) Extraction of line-of-sight ionospheric observables from GPS data using precise point positioning. Sci China Earth Sciences 55(11):1919–1928Google Scholar
  43. Zhang R, Song W, Yao Y, Shi C, Lou Y, Yi W (2014) Modeling regional ionospheric delay with ground-based BeiDou and GPS observations in China. GPS Solut. doi: 10.1007/s10291-014-0419-z

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Geodesy and Earth’s DynamicsInstitute of Geodesy and GeophysicsWuhanChina
  2. 2.Academy of Opto-ElectronicsChinese Academy of SciencesBeijingChina
  3. 3.German Space Operations CenterDeutsches Zentrum für Luft- und RaumfahrtWeßlingGermany
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations